A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modulation of neuronal activity in cortical organoids with bioelectronic delivery of ions and neurotransmitters. | LitMetric

Modulation of neuronal activity in cortical organoids with bioelectronic delivery of ions and neurotransmitters.

Cell Rep Methods

Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Institute for the Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA 95060, USA. Electronic address:

Published: January 2024

AI Article Synopsis

  • - The study emphasizes the importance of accurately controlling brain activity for the development of the cerebral cortex and uses cortical organoids as models to understand circuit formation and neurodevelopmental disorders.
  • - Researchers propose a bioelectronic method to manipulate neuronal activity in these organoids by delivering specific ions and neurotransmitters, enabling better temporal control over their activities.
  • - The results demonstrate how this technology allows for nuanced adjustments in neuronal activity, potentially advancing pharmacological research and improving our comprehension of brain functions.

Article Abstract

Precise modulation of brain activity is fundamental for the proper establishment and maturation of the cerebral cortex. To this end, cortical organoids are promising tools to study circuit formation and the underpinnings of neurodevelopmental disease. However, the ability to manipulate neuronal activity with high temporal resolution in brain organoids remains limited. To overcome this challenge, we introduce a bioelectronic approach to control cortical organoid activity with the selective delivery of ions and neurotransmitters. Using this approach, we sequentially increased and decreased neuronal activity in brain organoids with the bioelectronic delivery of potassium ions (K) and γ-aminobutyric acid (GABA), respectively, while simultaneously monitoring network activity. This works highlights bioelectronic ion pumps as tools for high-resolution temporal control of brain organoid activity toward precise pharmacological studies that can improve our understanding of neuronal function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10831944PMC
http://dx.doi.org/10.1016/j.crmeth.2023.100686DOI Listing

Publication Analysis

Top Keywords

neuronal activity
12
cortical organoids
8
organoids bioelectronic
8
bioelectronic delivery
8
delivery ions
8
ions neurotransmitters
8
brain organoids
8
organoid activity
8
activity
7
modulation neuronal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!