A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhanced use of chemical fertilizers and mitigation of heavy metal toxicity using biochar and the soil fungus Bipolaris maydis AF7 in rice: Genomic and metabolomic perspectives. | LitMetric

AI Article Synopsis

  • * AF7 demonstrated strong resistance to heavy metals and promoted growth by increasing nutrient absorption, sugar levels, and reducing harmful hormone concentrations in the plants.
  • * Whole-genome sequencing of AF7 confirmed its ability to tolerate heavy metals and enhance plant growth by regulating important genes, highlighting its potential for sustainable agriculture.

Article Abstract

Chemical fertilizers are the primary source of crop nutrition; however, their increasing rate of application has created environmental hazards, such as heavy metal toxicity and eutrophication. The synchronized use of chemical fertilizers and eco-friendly biological tools, such as microorganisms and biochar, may provide an efficient foundation to promote sustainable agriculture. Therefore, the current study aimed to optimize the nutrient uptake using an inorganic fertilizer, sulfate of potash (SOP) from the plant growth-promoting fungus Bipolaris maydis AF7, and biochar under heavy metal toxicity conditions in rice. Bioassay analysis showed that AF7 has high resistance to heavy metals and a tendency to produce gibberellin, colonize the fertilizer, and increase the intake of free amino acids. In the plant experiment, the co-application of AF7 +Biochar+MNF+SOP significantly lowered the heavy metal toxicity, enhanced the nutrient uptake in the rice shoots, and improved the morphological attributes (total biomass). Moreover, the co-application augmented the glucose and sucrose levels, whereas it significantly lowered the endogenous phytohormone levels (salicylic acid and jasmonic acid) in the rice shoots. The increase in nutrient content aligns with the higher expression of the OsLSi6, PHT1, and OsHKT1 genes. The plant growth traits and heavy metal tolerance of AF7 were validated by whole-genome sequencing that showed the presence of the heavy metal tolerance and detoxification protein, siderophore iron transporter, Gibberellin cluster GA4 desaturase, and DES_1 genes, as well as others that regulate glucose, antioxidants, and amino acids. Because the AF7 +biochar+inorganic fertilizer works synergistically, nutrient availability to the crops could be improved, and heavy metal toxicity and environmental hazards could be minimized.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2024.115938DOI Listing

Publication Analysis

Top Keywords

heavy metal
28
metal toxicity
20
chemical fertilizers
12
heavy
8
fungus bipolaris
8
bipolaris maydis
8
maydis af7
8
environmental hazards
8
nutrient uptake
8
amino acids
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!