Electrochemical ammonium (NH) storage (EAS) has been established as an efficient technology for NH recovery from wastewater. However, there are scientific difficulties unsolved regarding low storage capacity and selectivity, restricting its extensive engineering applications. In this work, electrochemically selective NH recovery from wastewater was achieved by coupling hydrogen bonding and charge storage with self-assembled bi-layer composite electrode (GO/VO). The NH storage was as high as 234.7 mg N g (> 10 times higher than conventional activated carbon). Three chains of proof were furnished to elucidate the intrinsic mechanisms for such superior performance. Density functional theory (DFT) showed that an excellent electron-donating ability for NH (0.08) and decrease of diffusion barrier (22.3 %) facilitated NH diffusion onto electrode interface. Physio- and electro-chemical results indicated that an increase of interlamellar spacing (14.3 %) and electrochemical active surface area (ECSA, 388.9 %) after the introduction of GO were responsible for providing greater channels and sites toward NH insertion. Both non-ionic chemical-bonding (V=O‧‧‧H, hydrogen-bonding) and charge storage were contributed to the higher capacity and selectivity for NH. This work offers underlying guideline for exploitation a storage manner for NH recovery from wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2024.121114 | DOI Listing |
Membranes (Basel)
December 2024
Shanghai Electronic Chemicals Innovation Institute, East China University of Science and Technology, Shanghai 200237, China.
Forward osmosis (FO) technology, known for its minimal energy requirements, excellent resistance to fouling, and significant commercial potential, shows enormous promise in the development of sustainable technologies, especially with regard to seawater desalination and wastewater. In this study, we improved the performance of the FO membrane in terms of its mechanical strength and hydrophilic properties. Generally, the water flux () of polyisophenylbenzamide (PMIA) thin-film composite (TFC)-FO membranes is still inadequate for industrial applications.
View Article and Find Full Text PDFMembranes (Basel)
November 2024
CONAHCYT-Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130, Chuburná de Hidalgo, Mérida 97200, Yucatán, Mexico.
The recovery and reuse of high-impact polystyrene (HIPS) into high-value products is crucial for reducing environmental thermoplastics waste and promoting sustainable materials for various applications. In this study, asymmetric membranes obtained from sulfonated HIPS waste were used for salt and dye removals. The incorporation of sulfonic acid (-SOH) groups into HIPS waste by direct chemical sulfonation with chlorosulfonic acid (CSA), at two different concentrations, was investigated to impart antifouling properties in membranes for water treatment.
View Article and Find Full Text PDFJ Xenobiot
December 2024
Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa.
The direct discharge of cationic surfactants into environmental matrices has exponentially increased due to their wide application in many products. These compounds and their degraded products disrupt microbial dynamics, hinder plant survival, and affect human health. Therefore, there is an urgent need to develop electroanalytical assessment techniques for their identification, determination, and monitoring.
View Article and Find Full Text PDFSe Pu
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
17-Estradiol (E2) is a natural steroidal estrogen essential for a variety of physiological functions in organisms. However, external E2, which is renowned for its potent biological effects, is also considered to be an endocrine-disrupting compound (EDC) capable of disturbing the normal operation of the endocrine system, even at nanogram-per-liter (ng/L) concentrations. Studies have revealed that medical and livestock wastewater can be contaminated with E2, which poses potential risks to human health.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
Research Center for Environmental Management, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
The wastewater treatment industry is an energy-intensive industry and one of the main sources of high warming potential greenhouse gases (GHG) such as CH and NO. The GHG reduction in this industry is an important part of achieving global climate goals. In 2019, there were 4 359 urban wastewater treatment plants in China, with a total wastewater treatment volume of 63.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!