Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We introduce a new application for online Raman spectroscopy to monitor adsorption breakthrough curves of a glucose and xylose mixtures. Univariate and multivariate Partial Least Squares (PLS) calibration models are developed for each sugar when they are dissolved in water and in the case of the ethanol addition as a cosolvent. The models are validated by performing actual breakthrough experiments in a liquid phase using a column packed with a zeolite adsorbent. The first statistical moments of predicted curves are compared to the reference curves obtained with offline High-Performance Liquid Chromatography (HPLC). Glucose and xylose univariate predictions in the presence or absence of ethanol in the mixture are accurate and no improvements are found with the PLS models. Spectral subtraction coupled with the first derivative proved to be effective pretreatments to develop robust univariate models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2024.123868 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!