The long-lived xenon isomers Xe and Xe are of interest for the GAMMA-MRI project, which aims at developing a novel imaging modality based on magnetic resonance of polarized unstable tracers. Here, we present the steps leading to and following the production of these two isomers via neutron irradiation of highly-enriched Xe and Xe gas samples at two high-flux reactors, the High-Flux Reactor (Réacteur à haut flux, RHF) at the Institut Laue-Langevin (ILL) and the MARIA reactor at the National Centre for Nuclear Research (NCBJ). We describe the experimental setups and procedures used to prepare the stable xenon samples, to open the irradiated samples, and to transfer xenon isomers into reusable transport vials. The activity of Xe and Xe was measured to be in the range of tens of MBq per sample of 0.8(1)mg, and was proportional to thermal neutron flux density. A small activity of unstable contaminants was also visible in the samples, but their level is not limiting for the GAMMA-MRI project's objectives. In addition, the minimum thermal neutron flux density required to produce Xe and Xe sufficient for the project could be also determined.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apradiso.2024.111174DOI Listing

Publication Analysis

Top Keywords

high-flux reactors
8
xenon isomers
8
thermal neutron
8
neutron flux
8
flux density
8
production neutron
4
neutron activation
4
activation ill-rhf
4
ill-rhf ncbj-maria
4
ncbj-maria high-flux
4

Similar Publications

This work presents the synthesis, purification, and characterization of a molten salt fuel for the irradiation experiment SALIENT-03 (SALt Irradiation ExperimeNT), a collaborative effort between the Nuclear Research and Consultancy Group and the Joint Research Centre, European Commission. The primary objective of the project is to investigate the corrosion behavior of selected Ni-alloy based structural materials which are being considered for the construction of fluoride molten salt reactors. During the test, these materials will be exposed to selected liquid molten fuel salts under irradiation in the High Flux Reactor in Petten, the Netherlands.

View Article and Find Full Text PDF

Validation of a general-use high flux isotope reactor-specific metaheuristic optimization framework for isotope production target design.

Appl Radiat Isot

February 2025

Oak Ridge National Laboratory 1 Bethel Valley Rd, Oak Ridge, TN 37830, USA.

Currently, advanced optimization methods are limited for isotope production (IP) campaigns at the US Department of Energy's High Flux Isotope Reactor (HFIR) located at Oak Ridge National Laboratory (ORNL), leading to years of conservative and historical approaches with minimal innovation. Moreover, the growing demand for new and existing isotopes is beginning to challenge the capacity of HFIR. This work explores the development and integration of metaheuristic (MH) optimization techniques for more efficient target design and irradiation strategies.

View Article and Find Full Text PDF

Study on novel neutron irradiation without beam shaping assembly in Boron Neutron Capture Therapy.

Sci Rep

September 2024

Department of Atomic, Molecular and Nuclear Physics, Universidad de Granada, 18072, Granada, Spain.

Boron Neutron Capture Therapy (BNCT) is performed using high-intensity neutron sources; however, the energy of the primary neutrons is too high for direct patient irradiation. Thus, neutron moderation is mandatory and is performed using a device known as a Beam Shaping Assembly (BSA). Due to the differences in flux and energy spectra between neutron sources, each facility needs a dedicated BSA design, whether it is based on a nuclear reactor or, more recently, on an accelerator.

View Article and Find Full Text PDF

Asymptotic giant branch stars are responsible for the production of most of the heavy isotopes beyond Sr observed in the solar system. Among them, isotopes shielded from the r-process contribution by their stable isobars are defined as s-only nuclei. For a long time the abundance of ^{204}Pb, the heaviest s-only isotope, has been a topic of debate because state-of-the-art stellar models appeared to systematically underestimate its solar abundance.

View Article and Find Full Text PDF

This study presents an innovative electrostatic spray flame synthesis (ESFS) reactor that combines the advantages of electrostatic spray and flame synthesis for precise spray control and efficient single-step continuous synthesis. To overcome the limitations of conventional ESFS systems, which often suffer from low atomized precursor flux, we successfully demonstrated a high-flux disk electrostatic atomizer coupled low-swirl flame reactor, achieving a precursor flux of up to 30 ml/h about 30 times higher than that of typical ESFS devices. The atomized precursor being rapidly carried away from the burner is undergoing high-temperature pyrolysis and particle formation through lifted premixed turbulent flames.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!