Purpose Of Review: Three review articles have been written that discuss the roles of the central and peripheral nervous systems in fracture healing. While content among the articles is overlapping, there is a key difference between them: the use of artificial intelligence (AI). In one paper, the first draft was written solely by humans. In the second paper, the first draft was written solely by AI using ChatGPT 4.0 (AI-only or AIO). In the third paper, the first draft was written using ChatGPT 4.0 but the literature references were supplied from the human-written paper (AI-assisted or AIA). This project was done to evaluate the capacity of AI to conduct scientific writing. Importantly, all manuscripts were fact checked and extensively edited by all co-authors rendering the final manuscript drafts significantly different from the first drafts.

Recent Findings: Unsurprisingly, the use of AI decreased the time spent to write a review. The two AI-written reviews took less time to write than the human-written paper; however, the changes and editing required in all three manuscripts were extensive. The human-written paper was edited the most. On the other hand, the AI-only paper was the most inaccurate with inappropriate reference usage and the AI-assisted paper had the greatest incidence of plagiarism. These findings show that each style of writing presents its own unique set of challenges and advantages. While AI can theoretically write scientific reviews, from these findings, the extent of editing done subsequently, the inaccuracy of the claims it makes, and the plagiarism by AI are all factors to be considered and a primary reason why it may be several years into the future before AI can present itself as a viable alternative for traditional scientific writing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10912134PMC
http://dx.doi.org/10.1007/s11914-023-00854-yDOI Listing

Publication Analysis

Top Keywords

paper draft
12
draft written
12
human-written paper
12
write review
8
fracture healing
8
paper
8
written solely
8
scientific writing
8
write
4
review article
4

Similar Publications

Tenomodulin (TNMD) is related to chondromodulin-1, a cartilage-derived growth regulator. It is specifically expressed in hypovascular connective tissues, including tendons and ligaments. Vascular endothelial growth factor A (VEGF-A) and calcitonin gene-related peptide (CGRP) correlate with angiogenesis and neurogenesis, respectively, during development.

View Article and Find Full Text PDF

Studies have shown that patients who undergo heart transplantation (HTx) are at an increased risk for developing skin cancer. This condition can add physiological and psychological burden to patients. Therefore, assessing the incidence and identifying risk factors for skin cancer are crucial steps in its prevention.

View Article and Find Full Text PDF

Under the direction of the National Directorate General for Hospitals, and based on British examples and methodology, a new inpatient psychiatric ward with a high security level started operating at the National Institute of Psychiatry and Addictology in October 2023. As a new, independent unit, the High Security Psychiatry is a niche in Hungarian psychiatric care. The aim of the project was to reduce the burden on the whole mental health care system in Hungary, to increase public confidence in care and the safety of society through organizing of a specialised care team operating in an appropriate infrastructural environment.

View Article and Find Full Text PDF

Accurate rupture risk assessment is essential for optimizing treatment decisions in patients with cerebral aneurysms. While computational fluid dynamics (CFD) has provided critical insights into aneurysmal hemodynamics, most analyses focus on blood flow patterns, neglecting the biomechanical properties of the aneurysm wall. To address this limitation, we applied Fluid-Structure Interaction (FSI) analysis, an integrative approach that simulates the dynamic interplay between hemodynamics and wall mechanics, offering a more comprehensive risk assessment.

View Article and Find Full Text PDF

Aims/hypothesis: Existing evidence on the relationship between intake of monounsaturated fatty acids (MUFAs) and type 2 diabetes is conflicting. Few studies have examined whether MUFAs from plant or animal sources (MUFA-Ps and MUFA-As, respectively) exhibit differential associations with type 2 diabetes. We examined associations of intakes of total MUFAs, MUFA-Ps and MUFA-As with type 2 diabetes risk.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!