The anoikis-related gene signature predicts survival and correlates with immune infiltration in osteosarcoma.

Aging (Albany NY)

Department of Orthopedics, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou 450003, China.

Published: January 2024

Anoikis is essential for the progression of many malignant tumors. However, the understanding of anoikis' roles in osteosarcoma remains scarce. This study conducted an extensive bioinformatics analysis to identify anoikis-related genes (ARGs), developed ARGs modeles for predicting OS and RFS, and evaluated the effect of these ARGs on osteosarcoma cell migration and invasion. The GSE16088 and GSE28425 datasets provided the differentially expressed genes (DEGs). The prognostic significance and functions of these DEGs were systematically investigated using several bioinformatics techniques. Transwell assays were conducted to determine the effect of OGT on osteosarcoma cell migration and invasion. Seven genes were identified as hub genes, including , and , while 71 ARGs were identified as DEGs. Four ARGs-, and -were used to develop an RFS-predicting model, whereas seven ARGs-, and -were used to develop an OS-predicting model in patients with osteosarcoma. In both the training and validation cohorts, high-risk group patients had significantly shorter OS and RFS duration than low-risk group patients. Furthermore, using the aforementioned ARGs, we developed clinically applicable nomograms for OS and RFS prediction. The proportion of tumor-infiltrating immune cells was significantly linked to risk scores. experiments revealed that knocking down OGT significantly inhibited the ability of MG63 and U2OS cells to invade and migrate. ARG-based gene signatures reliably predicted RFS and OS in osteosarcoma, and OGT showed promise as a potential biomarker. These findings contribute to a better understanding of ARGs' prognostic roles in osteosarcoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10817411PMC
http://dx.doi.org/10.18632/aging.205411DOI Listing

Publication Analysis

Top Keywords

roles osteosarcoma
8
args developed
8
osteosarcoma cell
8
cell migration
8
migration invasion
8
args- -were
8
-were develop
8
group patients
8
osteosarcoma
7
args
5

Similar Publications

Osteosarcoma (OS) is a commonly observed malignant tumor in orthopedics that has a very poor prognosis. The endosomal sorting complex required for transport (ESCRT) is important for the development and progression of cancer and may be a significant target for cancer therapy. First, we built a prognostic signature using 7 ESCRT-related genes (ERGs) to predict OS patient prognosis.

View Article and Find Full Text PDF

Nanoplastic (NP) pollution poses serious health hazards to aquatic ecosystems, impacting various physiological systems of aquatic organisms. This review examines the complex interplay between NPs and different physiological systems. In the digestive system, NPs downregulate the hsp70-like gene in Mytilus galloprovincialis, leading to decreased metabolic processes and impaired digestion.

View Article and Find Full Text PDF

scSMD: a deep learning method for accurate clustering of single cells based on auto-encoder.

BMC Bioinformatics

January 2025

Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Background: Single-cell RNA sequencing (scRNA-seq) has transformed biological research by offering new insights into cellular heterogeneity, developmental processes, and disease mechanisms. As scRNA-seq technology advances, its role in modern biology has become increasingly vital. This study explores the application of deep learning to single-cell data clustering, with a particular focus on managing sparse, high-dimensional data.

View Article and Find Full Text PDF

Introduction: This study utilized a injectable curcumin (Cur)-infused calcium phosphate silicate cement (CPSC) for addressing defects caused by bone cancer, and evaluated its promoting bone regeneration and exerting cytotoxic effects on osteosarcoma cells.

Methods: The material's physicochemical properties, biocompatibility with osteoblasts, and cytotoxicity toward osteosarcoma cells were rigorously analyzed.

Results: The findings demonstrate that CPSC-Cur signicantly prolongs the setting time, which can be optimized by adding silanized cellulose nanober (CNF-SH) to achieve a balance between workability and mechanical strength.

View Article and Find Full Text PDF

Enzyme-enzyme interactions are fundamental to the function of cells. Their atomistic mechanisms remain elusive mainly due to limitations of in-cell measurements. We address this challenge by atomistically modeling, for a total of ≈80 μs, a slice of the human cell cytoplasm that includes three successive enzymes along the glycolytic pathway: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), and phosphoglycerate mutase (PGM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!