A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Accurate and Transferable Machine Learning Potential for Molecular Dynamics Simulation of Sodium Silicate Glasses. | LitMetric

An accurate and transferable machine learning (ML) potential for the simulation of binary sodium silicate glasses over a wide range of compositions (from 0 to 50% NaO) was developed. The potential energy surface is approximated by the sum of atomic energy contributions mapped by a neural network algorithm from the local geometry comprising information on atomic distances and angles with neighboring atoms using the DeePMD code [Wang, H. 2018, 228, 178-184]. Our model was trained on a large data set of total energies and atomic forces computed at the density functional theory level on structures extracted from classical molecular dynamics (MD) simulations performed at several temperatures from 300 to 3000 K. This allows for the generation of a robust and transferable ML potential applicable over the full compositional range of glass formability at different temperatures that outperforms the empirical potentials available in the literature in reproducing structures and properties such as bond angle distribution, total distribution functions, and vibrational density of state. The generality of the approach enables the future training of a potential with other or more elements allowing for simulations of structures, properties, and behavior of ternary and multicomponent oxide glasses with nearly ab initio accuracy at a fraction of the computational cost.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.3c01115DOI Listing

Publication Analysis

Top Keywords

accurate transferable
8
transferable machine
8
machine learning
8
learning potential
8
molecular dynamics
8
sodium silicate
8
silicate glasses
8
structures properties
8
potential
5
potential molecular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!