Background: Applying good data management and FAIR (Findable, Accessible, Interoperable, and Reusable) data principles in research projects can help disentangle knowledge discovery, study result reproducibility, and data reuse in future studies. Based on the concepts of the original FAIR principles for research data, FAIR principles for research software were recently proposed. FAIR Digital Objects enable discovery and reuse of Research Objects, including computational workflows for both humans and machines. Practical examples can help promote the adoption of FAIR practices for computational workflows in the research community. We developed a multi-omics data analysis workflow implementing FAIR practices to share it as a FAIR Digital Object.
Findings: We conducted a case study investigating shared patterns between multi-omics data and childhood externalizing behavior. The analysis workflow was implemented as a modular pipeline in the workflow manager Nextflow, including containers with software dependencies. We adhered to software development practices like version control, documentation, and licensing. Finally, the workflow was described with rich semantic metadata, packaged as a Research Object Crate, and shared via WorkflowHub.
Conclusions: Along with the packaged multi-omics data analysis workflow, we share our experiences adopting various FAIR practices and creating a FAIR Digital Object. We hope our experiences can help other researchers who develop omics data analysis workflows to turn FAIR principles into practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10787363 | PMC |
http://dx.doi.org/10.1093/gigascience/giad115 | DOI Listing |
Insects
November 2024
College of Life Science, Hebei University, Baoding 071002, China.
: Transposable elements (TEs) and noncoding sequences are major components of the genome, yet their functional contributions to long noncoding RNAs (lncRNAs) are not well understood. Although many lncRNAs originating from TEs (TE-lncRNAs) have been identified across various organisms, their characteristics and regulatory roles, particularly in insects, remain largely unexplored. This study integrated multi-omics data to investigate TE-lncRNAs in , focusing on the influence of transposons across different omics levels.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
Vulnerable atherosclerotic plaques, especially hemorrhaged lesions, are the major cause of mortalities related to vascular pathologies. The early identification of vulnerable plaques helps to stratify patients at risk of developing acute vascular events. In this study, proteomics analyses of human carotid artery samples collected from patients with atheromatous plaques and complicated lesions, respectively, as well as from healthy controls were performed.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China.
Salt stress poses a significant challenge to plant growth and restricts agricultural development. To delve into the intricate mechanisms involved in soybean's response to salt stress and find targets to improve the salt resistance of soybean, this study integrated transcriptomic, proteomic, and metabolomic analyses to explore the regulatory networks involved in soybean salt tolerance. Transcriptomic analysis revealed significant changes in transcription factors, hormone-related groups, and calcium ion signaling.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China.
Elevated levels of reactive oxygen species (ROS) are caused by ultraviolet B radiation (UV-B) stress. In response, plants strengthen their cell membranes, impeding photosynthesis. Additionally, UV-B stress initiates oxidative stress within the antioxidant defense system and alters secondary metabolism, particularly by increasing the quantity of UV-absorbing compounds such as flavonoids.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China.
Bermudagrass ( L.) is a warm-season grass species of significant ecological and economic importance. It is widely utilized in turf management and forage production due to its resilience to drought, salt, and other environmental stresses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!