Water vs. Organic Solvents: Water-Controlled Divergent Reactivity of 2-Substituted Indoles.

Chem Asian J

Department of Chemistry, School of Science, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.

Published: March 2024

Water is not a good solvent for most organic compounds, yet water can offer many benefits to some organic reactions, hence enriching organic chemistry. Herein, the unique divergent reactivity of 2-substituted indoles with ⋅NO sources is presented. The amount of water solvent was harnessed for a scalable, benign, and expedient synthesis of indolenine oximes, albeit with water's inability to dissolve the reactants. 2-Methoxyethyl nitrite, which has been tailored for reactions in water, empowered this protocol by enhancing the product selectivity. We further report on chemoselective transformations of the products that rely on their structural features. Our findings are expected to offer access to an underexplored chemical space. The platform is also applicable to oximinomalonate synthesis. Mechanistic studies revealed the important role of water in the reversal of stability between oxime and nitroso compounds, promoting the proton transfer.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.202301045DOI Listing

Publication Analysis

Top Keywords

divergent reactivity
8
reactivity 2-substituted
8
2-substituted indoles
8
water
6
water organic
4
organic solvents
4
solvents water-controlled
4
water-controlled divergent
4
indoles water
4
water good
4

Similar Publications

Reduced function or hypomorphic variants in recombination-activating genes (RAG) 1 or 2 result in a broad clinical phenotype including common variable immunodeficiency (CVID) and even adult-onset disease. Milder RAG variants are less characterized. Here we describe the longitudinal course of a milder combined RAG deficiency in 3 of 7 siblings sharing the same RAG2 mutations over a 50-year study.

View Article and Find Full Text PDF

Discovering electrocatalysts that can efficiently convert carbon dioxide (CO) to valuable fuels and feedstocks using excess renewable electricity is an emergent carbon-neutral technology. A single metal atom embedded in doped graphene, , single-atom catalyst (SAC), possesses high activity and selectivity for electrochemical CO reduction (COR) to CO, yet further reduction to hydrocarbons is challenging. Here, using density functional theory calculations, we investigate stability and reactivity of a broad SAC chemical space with various metal centers (3d transition metals) and dopants (2p dopants of B, N, O; 3p dopants of P, S) as electrocatalysts for COR to methane and methanol.

View Article and Find Full Text PDF

Traditional classification by clinical phenotype or oxidative phosphorylation (OXPHOS) complex deficiencies often fails to clarify complex genotype-phenotype correlations in mitochondrial disease. A multimodal functional assessment may better reveal underlying disease patterns. Using imaging flow cytometry (IFC), we evaluated mitochondrial fragmentation, swelling, membrane potential, reactive oxygen species (ROS) production, and mitochondrial mass in fibroblasts from 31 mitochondrial disease patients.

View Article and Find Full Text PDF

Background: Treatment with immunotherapy can elicit varying responses across cancer types, and the mechanistic underpinnings that contribute to response vrsus progression remain poorly understood. However, to date there are few preclinical models that accurately represent these disparate disease scenarios.

Methods: Using combinatorial radio-immunotherapy consisting of PD-1 blockade, IL2Rβγ biased signaling, and OX40 agonism we were able to generate preclinical tumor models with conflicting responses, where head and neck squamous cell carcinoma (HNSCC) models respond and pancreatic ductal adenocarcinoma (PDAC) progresses.

View Article and Find Full Text PDF

Ascorbic acid transporter MmSLC23A2 functions to inhibit apoptosis via ROS scavenging in hard clam (Mercenaria mercenaria) under acute hypo-salinity stress.

Int J Biol Macromol

January 2025

Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China. Electronic address:

Solute carrier family 23 (SLC23) mediates cellular uptake of ascorbic acid, a crucial antioxidant protecting organisms against oxidative stress. Despite advances in understanding SLC23 in mammals, its physiological roles in bivalves remain poorly understood. Notably, euryhaline bivalves exhibit a significant expansion and positive selection of SLC23, highlighting the need for deeper investigation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!