A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3124
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Material Properties of Fiber Bundles of the Superficial Medial Collateral Ligament of the Knee Joint. | LitMetric

Material Properties of Fiber Bundles of the Superficial Medial Collateral Ligament of the Knee Joint.

J Biomech Eng

State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China.

Published: March 2024

The superficial medial collateral ligament (sMCL) of the human knee joint has functionally separate anterior and posterior fiber bundles. The two bundles are alternatively loaded as the knee flexion angle changes during walking. To date, the two bundles are usually not distinguished in knee ligament simulations because there has been little information about their material properties. In this study, we conducted quasi-static tensile tests on the sMCL of matured porcine stifle joints and obtained the material properties of the anterior bundle (AB), posterior bundle (PB), and whole ligament (WL). AB and PB have similar failure stress but different threshold strain, modulus, and failure strain. As a result, we recommend assigning different material properties (i.e., modulus and failure strain) to the two fiber bundles to realize biofidelic ligament responses in human body models. However, it is often inconvenient to perform tensile tests on AB and PB. Hence, we proposed a microstructural model-based approach to predict the material properties of AB and PB from the test results of WL. Such obtained modulus values of AB and PB had an error of 2% and 0.3%, respectively, compared with those measured from the tests. This approach can reduce the experimental cost for acquiring the needed mechanical property data for simulations.

Download full-text PDF

Source
http://dx.doi.org/10.1115/1.4064476DOI Listing

Publication Analysis

Top Keywords

material properties
20
fiber bundles
12
superficial medial
8
medial collateral
8
collateral ligament
8
knee joint
8
tensile tests
8
modulus failure
8
failure strain
8
material
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!