Background: The unplanned and intensified use of insecticides to control mosquito-borne diseases has led to an upsurge of resistance to commonly used insecticides. Aedes aegypti, the main vector of dengue, chikungunya, and Zika virus, is primarily controlled through the application of adulticides (pyrethroid insecticides) and larvicides (temephos). Fine spatial-scale analysis of resistance may reveal important resistance-related patterns, and the application of mathematical models to determine the phenotypic resistance status lessens the cost and usage of resources, thus resulting in an enhanced and successful control program.
Methods: The phenotypic resistance for permethrin, deltamethrin, and malathion was monitored in the Ae. aegypti populations using the World Health Organization (WHO) adult bioassay method. Mosquitoes' resistance to permethrin and deltamethrin was evaluated for the commonly occurring base substitutions in the voltage-gated sodium channel (vgsc) gene. Rational functions were used to determine the relationship between the kdr alleles and the phenotypic resistant percentage of Ae. aegypti in Sri Lanka.
Results: The results of the bioassays revealed highly resistant Ae. aegypti populations for the two pyrethroid insecticides (permethrin and deltamethrin) tested. All populations were susceptible to 5% malathion insecticide. The study also revealed high frequencies of C1534 and G1016 in all the populations studied. The highest haplotype frequency was detected for the haplotype CC/VV, followed by FC/VV and CC/VG. Of the seven models obtained, this study suggests the prediction models using rational approximation considering the C allele frequencies and the total of C, G, and P allele frequencies and phenotypic resistance as the best fits for the area concerned.
Conclusions: This is the first study to our knowledge to provide a model to predict phenotypic resistance using rational functions considering kdr alleles. The flexible nature of the rational functions has revealed the most suitable association among them. Thus, a general evaluation of kdr alleles prior to insecticide applications would unveil the phenotypic resistance percentage of the wild mosquito population. A site-specific strategy is recommended for monitoring resistance with a mathematical approach and management of insecticide applications for the vector population.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785423 | PMC |
http://dx.doi.org/10.1186/s13071-023-06100-9 | DOI Listing |
Cell Mol Biol (Noisy-le-grand)
January 2025
Jiangxi Key Laboratory of Oncology (2024SSY06041), Jiangxi Cancer Hospital & Institute, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330029, P.R. China.
Uropathogens, particularly bacteria, can infect any part of the urinary tract and cause bacteriuria. Our study aimed to examine the antibiotic-resistant profile, associated risk factors, and phenotypic and genotypic features of ESBL, carbapenemase, and mcr resistance genes in multidrug-resistant bacteria. Samples were inoculated on culture media, identified using standard biochemical tests, and species confirmation was performed via 16S rRNA gene amplification.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.
Carbapenem resistant Acinetobacter baumannii has evolved as the most troublesome microorganism with multiple virulence factors. Biofilm formation, porins, micronutrient capturing mechanism and quorum sensing, provide protection against desiccation, host-pathogen killing and enhance its persistence. The conservation of these factors between colonizing and pathogenic carbapenem resistant A.
View Article and Find Full Text PDFJ Genet Genomics
January 2025
National Engineering Laboratory of Crop Stress Resistance, College of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China. Electronic address:
Mitochondria are semi-autonomous organelle present in eukaryotic cells, containing their own genome and transcriptional machinery. However, their functions are intricately linked to proteins encoded by the nuclear genome. Mitochondrial transcription termination factors (mTERFs) are nucleic acid-binding proteins involved in RNA splicing and transcription termination within plant mitochondria and chloroplasts.
View Article and Find Full Text PDFSci Total Environ
January 2025
Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Ireland; Centre for One Health, University of Galway, Ireland.
Urban water environments, including canals, harbours and estuaries are susceptible to contamination with antimicrobials and drug-resistant bacteria through domestic and industrial wastewater discharges and storm water overflows. There is potential for wildlife using these waters to acquire and transmit drug-resistant bacteria and antimicrobial resistance genes (ARGs) of clinical importance. This study aimed to assess clinically important drug-resistant bacteria in urban waterfowl, particularly mute swans.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Sublethal tumor cells have an urgent need for energy, making it common for them to switch metabolic phenotypes between glycolysis and oxidative phosphorylation (OXPHOS) for compensatory energy supply; thus, the synchronous interference of dual metabolic pathways for limiting energy level is essential in inhibiting sublethal tumor growth. Herein, a multifunctional nanoplatform of Co-MOF-loaded anethole trithione (ADT) and myristyl alcohol (MA), modified with GOx and hyaluronic acid (HA) was developed, namely, CAMGH. It could synchronously interfere with dual metabolic pathways including glycolysis and OXPHOS to restrict the adenosine triphosphate (ATP) supply, achieving the inhibition to sublethal tumors after microwave (MW) thermal therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!