Objectives: To evaluate the value of CT-based whole lung radiomics nomogram for identifying the risk of cardiovascular disease (CVD) in patients with chronic obstructive pulmonary disease (COPD).
Materials And Methods: A total of 974 patients with COPD were divided into a training cohort (n = 402), an internal validation cohort (n = 172), and an external validation cohort (n = 400) from three hospitals. Clinical data and CT findings were analyzed. Radiomics features of whole lung were extracted from the non-contrast chest CT images. A radiomics signature was constructed with algorithms. Combined with the radiomics score and independent clinical factors, multivariate logistic regression analysis was used to establish a radiomics nomogram. ROC curve was used to analyze the prediction performance of the model.
Results: Age, weight, and GOLD were the independent clinical factors. A total of 1218 features were extracted and reduced to 15 features to build the radiomics signature. In the training cohort, the combined model (area under the curve [AUC], 0.731) showed better discrimination capability (p < 0.001) than the clinical factors model (AUC, 0.605). In the internal validation cohort, the combined model (AUC, 0.727) performed better (p = 0.032) than the clinical factors model (AUC, 0.629). In the external validation cohort, the combined model (AUC, 0.725) performed better (p < 0.001) than the clinical factors model (AUC, 0.690). Decision curve analysis demonstrated the radiomics nomogram outperformed the clinical factors model.
Conclusion: The CT-based whole lung radiomics nomogram has the potential to identify the risk of CVD in patients with COPD.
Clinical Relevance Statement: This study helps to identify cardiovascular disease risk in patients with chronic obstructive pulmonary disease on chest CT scans.
Key Points: • To investigate the value of CT-based whole lung radiomics features in identifying the risk of cardiovascular disease in chronic obstructive pulmonary disease patients. • The radiomics nomogram showed better performance than the clinical factors model to identify the risk of cardiovascular disease in patients with chronic obstructive pulmonary disease. • The radiomics nomogram demonstrated excellent performance in the training, internal validation, and external validation cohort (AUC, 0.731; AUC, 0.727; AUC, 0.725).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00330-023-10502-9 | DOI Listing |
BMC Cancer
January 2025
Department of Radiology, Xiangtan Central Hospital, Xiangtan, 411000, P. R. China.
Background: This study aims to quantify intratumoral heterogeneity (ITH) using preoperative CT image and evaluate its ability to predict pathological high-grade patterns, specifically micropapillary and/or solid components (MP/S), in patients diagnosed with clinical stage I solid lung adenocarcinoma (LADC).
Methods: In this retrospective study, we enrolled 457 patients who were postoperatively diagnosed with clinical stage I solid LADC from two medical centers, assigning them to either a training set (n = 304) or a test set (n = 153). Sub-regions within the tumor were identified using the K-means method.
Insights Imaging
January 2025
Department of Radiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.
Objectives: To develop and validate the performance of CT-based radiomics models for predicting the prognosis of acute pancreatitis.
Methods: All 344 patients (51 ± 15 years, 171 men) in a first episode of acute pancreatitis (AP) were retrospectively enrolled and randomly divided into training (n = 206), validation (n = 69), and test (n = 69) sets with the ratio of 6:2:2. The patients were dichotomized into good and poor prognosis subgroups based on follow-up CT and clinical data.
Abdom Radiol (NY)
January 2025
First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
Purpose: HER2 expression is crucial for the application of HER2-targeted antibody-drug conjugates. This study aims to construct a predictive model by integrating multiparametric magnetic resonance imaging (mpMRI) based multimodal radiomics and the Vesical Imaging-Reporting and Data System (VI-RADS) score for noninvasive identification of HER2 status in bladder urothelial carcinoma (BUC).
Methods: A total of 197 patients were retrospectively enrolled and randomly divided into a training cohort (n = 145) and a testing cohort (n = 52).
Front Neurol
December 2024
Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Objective: To establish and validate a model based on hyperdense middle cerebral artery sign (HMCAS) radiomics features for predicting hemorrhagic transformation (HT) in patients with acute ischemic stroke (AIS) after endovascular treatment (EVT).
Methods: Patients with AIS who presented with HMCAS on non-contrast computed tomography (NCCT) at admission and underwent EVT at three comprehensive hospitals between June 2020 and January 2024 were recruited for this retrospective study. A radiomics model was constructed using the HMCAS radiomics features most strongly associated with HT.
Front Oncol
December 2024
Department of Radiology, Affiliated Hospital of Qingdao University, Qingdao, China.
Background: The expression level of Ki-67 in nasopharyngeal carcinoma (NPC) affects the prognosis and treatment options of patients. Our study developed and validated an MRI-based radiomics nomogram for preoperative evaluation of Ki-67 expression levels in nasopharyngeal carcinoma (NPC).
Methods: In all, 133 patients with pathologically-confirmed (post-operatively) NPC who underwent MRI examination in one of two medical centers.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!