Biochemical and structural characterization of an inositol pyrophosphate kinase from a giant virus.

EMBO J

Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.

Published: February 2024

Kinases that synthesize inositol phosphates (IPs) and pyrophosphates (PP-IPs) control numerous biological processes in eukaryotic cells. Herein, we extend this cellular signaling repertoire to viruses. We have biochemically and structurally characterized a minimalist inositol phosphate kinase (i.e., TvIPK) encoded by Terrestrivirus, a nucleocytoplasmic large ("giant") DNA virus (NCLDV). We show that TvIPK can synthesize inositol pyrophosphates from a range of scyllo- and myo-IPs, both in vitro and when expressed in yeast cells. We present multiple crystal structures of enzyme/substrate/nucleotide complexes with individual resolutions from 1.95 to 2.6 Å. We find a heart-shaped ligand binding pocket comprising an array of positively charged and flexible side chains, underlying the observed substrate diversity. A crucial arginine residue in a conserved "G-loop" orients the γ-phosphate of ATP to allow substrate pyrophosphorylation. We highlight additional conserved catalytic and architectural features in TvIPK, and support their importance through site-directed mutagenesis. We propose that NCLDV inositol phosphate kinases may have assisted evolution of inositol pyrophosphate signaling, and we discuss the potential biogeochemical significance of TvIPK in soil niches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10897400PMC
http://dx.doi.org/10.1038/s44318-023-00005-0DOI Listing

Publication Analysis

Top Keywords

inositol pyrophosphate
8
synthesize inositol
8
inositol phosphate
8
inositol
6
biochemical structural
4
structural characterization
4
characterization inositol
4
pyrophosphate kinase
4
kinase giant
4
giant virus
4

Similar Publications

The putative polyamine transporter Shp2 facilitates phosphate export in an Xpr1-independent manner and contributes to high phosphate tolerance.

J Biol Chem

December 2024

Department of Biology, Faculty of Science and Engineering; Institute of Integrative Neurobiology, Konan University, Kobe, Japan. Electronic address:

Phosphate (Pi) homeostasis at the cellular level is crucial, requiring coordinated Pi uptake, storage, and export. However, the regulatory mechanisms, particularly those governing Pi export, remain elusive, despite their relevance to human diseases like primary familial brain calcification. While Xpr1, conserved across eukaryotes, is the only known Pi exporter, the existence of additional Pi exporting factors is evident; however, these factors have been poorly characterized.

View Article and Find Full Text PDF

Inhibiting IP6K1 confers atheroprotection by elevating circulating apolipoprotein A-I.

Metabolism

December 2024

Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China; Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China. Electronic address:

Background And Aims: Atherosclerotic cardiovascular diseases are the leading cause of death. Apolipoprotein A-I (apoA-I) mediates cholesterol efflux to lower the risks of atherosclerosis. Elevating circulating apoA-I is an effective strategy for atheroprotection.

View Article and Find Full Text PDF

Inositol pyrophosphates (PP-InsPs) are nutrient messengers whose cellular levels are precisely regulated. Diphosphoinositol pentakisphosphate kinases (PPIP5Ks) generate the active signaling molecule 1,5-InsP8. PPIP5Ks harbor phosphatase domains that hydrolyze PP-InsPs.

View Article and Find Full Text PDF

Phosphorus (P) is a quintessential macronutrient utilized by plants to support various metabolic processes during growth and development. Recent studies have revealed the pivotal role of inositol hexa-kis/pyrophosphate (InsP6-8), the derivatives of Myo-inositol (MI), in facilitating the interaction between SYG1/PHO81/XPR1 (SPX) and Phosphate starvation response (PHR) proteins. Myo-inositol phosphate synthase (MIPS) catalyzes the first committed step in MI biosynthesis.

View Article and Find Full Text PDF

Inositol pyrophosphates are eukaryotic signaling molecules that have been recently identified as key regulators of plant phosphate sensing and homeostasis. Given the importance of phosphate to current and future agronomic practices, we sought to design plants, which could be used to sequester phosphate, as a step in a phytoremediation strategy. To achieve this, we expressed diadenosine and diphosphoinositol polyphosphate phosphohydrolase (DDP1), a yeast (Saccharomyces cerevisiae) enzyme demonstrated to hydrolyze inositol pyrophosphates, in Arabidopsis thaliana and pennycress (Thlaspi arvense), a spring annual cover crop with emerging importance as a biofuel crop.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!