Changes in real-world walking speed following 60-day bed-rest.

NPJ Microgravity

Institute of Aerospace Medicine, Department of Muscle and Bone Metabolism, German Aerospace Center, Cologne, Germany.

Published: January 2024

The aim of this work was to explore whether real-world walking speed (RWS) would change as a consequence of 60-day bed-rest. The main hypothesis was that daily RWS would decrease after the bed-rest, with a subsequent recovery during the first days of re-ambulation. Moreover, an exploratory analysis was done in order to understand whether there is an agreement between the loss in RWS after bed-rest and the loss in the maximum oxygen uptake capacity (VO), or the loss in maximal vertical jump power (JUMP) respectively. Twenty-four subjects were randomly assigned to one of three groups: a continuous artificial gravity group, an intermittent artificial gravity group, or a control group. The fitted linear mixed effects model showed a significant decrease (p < 0.001) of RWS after the 60-day bed-rest and a subsequent increase (p < 0.001) of RWS during the 14-day recovery period in the study facility. No or little agreement was found between the loss in RWS and the loss in VO capacity or the loss in maximal vertical jumping power (RWS vs. VO: p = 0.81, RWS vs. JUMP: p = 0.173). Decreased RWS after bed-rest, with a follow-up recovery was observed for all three groups, regardless of the training intervention. This suggests that RWS, also in these settings, was able to reflect a de-conditioning and follow-up recovery process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10786829PMC
http://dx.doi.org/10.1038/s41526-023-00342-8DOI Listing

Publication Analysis

Top Keywords

real-world walking
8
walking speed
8
60-day bed-rest
8
artificial gravity
8
gravity group
8
changes real-world
4
speed 60-day
4
bed-rest
4
bed-rest aim
4
aim work
4

Similar Publications

Objective: Current clinical practice guidelines support structured, progressive protocols for improving walking after stroke. Technology enables monitoring of exercise and therapy intensity, but safety concerns could also be addressed. This study explores functional mobility in post-stroke individuals using wearable technology to quantify movement smoothness-an indicator of safe mobility.

View Article and Find Full Text PDF

Background: Despite the reported efficacy of overground robotic exoskeleton (ORE) for rehabilitation of mobility post-stroke, its effectiveness in real-world practice is still debated. We analysed prospectively collected data from Improving Mobility Via Exoskeleton (IMOVE), a multicentre clinical implementation programme of ORE enrolling participants with various neurological conditions and were given options to choose between 12 sessions of ORE or conventional therapy (control).

Methods: This is analysis of participants under IMOVE who fulfilled the following criteria (i) primary diagnosis was stroke (ischemic, hemorrhagic; first or recurrent), (ii) onset of stroke was within 9 months and (iii) the intervention was during inpatient stay.

View Article and Find Full Text PDF

Introduction: Numerous immunomodulatory treatments exist for multiple sclerosis (MS), including those that deplete immune cells (e.g. anti-CD20 medications), relocate immune cells (e.

View Article and Find Full Text PDF

Pedestrians use visual cues (i.e., gaze) to communicate with the other road users, and visual attention towards the surrounding environment is essential to be situationally aware and avoid oncoming conflicts.

View Article and Find Full Text PDF

Background: Advanced technologies are becoming increasingly accessible in rehabilitation. Current research suggests technology can increase therapy dosage, provide multisensory feedback, and reduce manual handling for clinicians. While more high-quality evidence regarding the effectiveness of rehabilitation technologies is needed, understanding of how to effectively integrate technology into clinical practice is also limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!