Since their invention, conventional plastics have contributed in the betterment of the society in numerous ways, nevertheless their deleterious impacts on the natural ecosystems and living creatures is irrefutable. The management of plastic waste generated is a concern worldwide and therefore quest for the plastic alternates or bioplastics is imminent. Here, we explore the suitability of keratin from human hair waste as the candidate for the production of bioplastic films. Keratin extracted from hair was used to form the films or 'kertics' by solution casting and curing. Ethanediol, di-ethylene glycol and tri-ethylene glycol were used as novel plasticizers along with glycerol in the keratin film formation. The film prepared were of the thickness 190-220 µm with the area of about 4.54 ± 0.2 cm. Water uptake by G100, ED100, DEG100 and TEG100 films was recorded to be 4.8, 6.2, 4.9 and 6.3% respectively. FESEM analysis revealed that the films with 100 µl of 1% glycerol (G100) had continuous surface morphology except few pits of 0.1 µm, also DEG100 and TEG100 films have the most uniform surface morphology with no evident pits, holes or bulges. X-ray diffractogram showed characteristic peak of keratin at 19.5° and the d-spacing value observed was 0.45 nm. The FTIR studies suggested that the films retained keratin in non degraded form, and possessed the characteristic Amide peaks. The films were also found to be biodegradable in studies involving keratinophilic fungal strain of A. oryzae. These films could found potential applications in packaging industry, disposable items manufacturing and biomaterial generation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10786936 | PMC |
http://dx.doi.org/10.1038/s41598-023-44905-x | DOI Listing |
Chem Sci
January 2025
Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen Guangdong 518060 China
SbTe-based flexible thin films can be utilized in the fabrication of self-powered wearable devices due to their huge potential in thermoelectric performance. Although doping can significantly enhance the power factor value, the process of identifying suitable dopants is typically accompanied by numerous repeating experiments. Herein, we introduce Zn doping into thermally diffused p-type SbTe flexible thin films with a candidate dopant validated using the first-principles calculations.
View Article and Find Full Text PDFFood Chem X
January 2025
Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China.
Green electrospinning for the production of freshness-indicating labels, employing entirely natural biopolymers and pigments, holds significance in the development of intelligent food packaging. This study aimed to prepare zein (Z) fibrous film (FF) incorporated with varying concentrations of anthocyanin (A; 0-0.5 %) through green electrospinning.
View Article and Find Full Text PDFHeliyon
January 2025
Bangladesh Council of Scientific and Industrial Research (BCSIR), Bangladesh.
A soda lime glass substrate is used for fabricating CuZnSnS (CZTS) thin films using copper (II) sulfide (CuS), zinc sulfide (ZnS), and tin sulfide (SnS) targets using an advanced co-sputtering deposition process. Following that, the films are annealed at 470 °C without sulfur (S). An algorithm based on the deposition rate of the previously specified targets set the co-sputtering condition, which maintains a deposition pressure of 5, 10, 15, and 20 mTorr.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China.
A one-step hydrothermal method was applied to prepare carbon dots (CDs) with superior fluorescence properties using chitosan as a carbon source. The as-prepared carbon dots were then grafted onto a sodium alginate-gelatin hydrogel film to form a fluorescent hydrogel film (FHGF), emitting at 450 nm under excitation of 350 nm light. In comparison to the CDs, the fluorescence intensity of this film was maintained over 90.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Southern University of Science and Technology, Department of Mechanical and Energy Engineering, 1088 Xueyuan Blvd, Nanshan District, 518055, Shenzhen, CHINA.
The escape of organic cations over time from defective perovskite interface leads to non-stoichiometric terminals, significantly affecting the stability of perovskite solar cells (PSCs). How to stabilize the interface composition under environmental stress remains a grand challenge. To address this issue, we utilize thiol-functionalized particles as a "seed" and conduct in situ polymerization of 2,2,3,4,4,4-hexafluorobutyl methacrylate (HFMA) as a "root" at the bottom of the perovskite layer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!