Spatiotemporal imaging and shaping of electron wave functions using novel attoclock interferometry.

Nat Commun

State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China.

Published: January 2024

Electrons detached from atoms by photoionization carry valuable information about light-atom interactions. Characterizing and shaping the electron wave function on its natural timescale is of paramount importance for understanding and controlling ultrafast electron dynamics in atoms, molecules and condensed matter. Here we propose a novel attoclock interferometry to shape and image the electron wave function in atomic photoionization. Using a combination of a strong circularly polarized second harmonic and a weak linearly polarized fundamental field, we spatiotemporally modulate the atomic potential barrier and shape the electron wave functions, which are mapped into a temporal interferometry. By analyzing the two-color phase-resolved and angle-resolved photoelectron interference, we are able to reconstruct the spatiotemporal evolution of the shaping on the amplitude and phase of electron wave function in momentum space within the optical cycle, from which we identify the quantum nature of strong-field ionization and reveal the effect of the spatiotemporal properties of atomic potential on the departing electron. This study provides a new approach for spatiotemporal shaping and imaging of electron wave function in intense light-matter interactions and holds great potential for resolving ultrafast electronic dynamics in molecules, solids, and liquids.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10786904PMC
http://dx.doi.org/10.1038/s41467-024-44775-5DOI Listing

Publication Analysis

Top Keywords

electron wave
24
wave function
16
electron
8
shaping electron
8
wave functions
8
novel attoclock
8
attoclock interferometry
8
atomic potential
8
wave
6
spatiotemporal
4

Similar Publications

Selected configuration interaction for high accuracy and compact wave functions: Propane as a case study.

J Chem Phys

January 2025

School of Engineering and Physical Sciences, Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland.

Traditionally, because of the limit of full configuration interaction, complete active space (CAS) theory is most often used to model bond dissociation and other dynamical processes where the multi-reference character becomes important. Inconveniently, the CAS method is highly dependent on the choice of active space and, therefore, inherently non-black-box, in addition to the exponential scaling with respect to electrons and orbitals. This illustrates the need for methods that can accurately treat multi-reference electronic structure problems without significant dependence on input parameters.

View Article and Find Full Text PDF

Metalloporphyrins on interfaces offer a rich playground for functional materials and hence have been subjected to intense scrutiny over the past decades. As the same porphyrin macrocycle on the same surface may exhibit vastly different physicochemical properties depending on the metal center and its substituents, it is vital to have a thorough structural and chemical characterization of such systems. Here, we explore the distinctions arising from coverage and macrocycle substituents on the closely related ruthenium octaethyl porphyrin and ruthenium tetrabenzo porphyrin on Ag(111).

View Article and Find Full Text PDF

Controlling spin-polarized currents at the nanoscale is of immense importance for high-density magnetic data storage and spin-based logic devices. As electronic devices are miniaturized to the ultimate limit of individual atoms and molecules, electronic transport is strongly influenced by the properties of the individual spin centers and their magnetic interactions. In this work, we demonstrate the precise control and detection of spin-polarized currents through two coupled spin centers at a tunnel junction by controlling their spin-spin interactions.

View Article and Find Full Text PDF

Global Aromatic Ring Currents in Neutral Porphyrin Nanobelts.

ACS Nano

January 2025

Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.

The ability of a ring-shaped molecule to sustain a global aromatic or antiaromatic ring current when placed in a magnetic field indicates that its electronic wave function is coherently delocalized around its whole circumference. Large molecules that display this behavior are attractive components for molecular electronic devices, but this phenomenon is rare in neutral molecules with circuits of more than 40 π-electrons. Here, we use theoretical methods to investigate how the global ring currents evolve with increasing ring size in cyclic molecular nanobelts built from edge-fused porphyrins.

View Article and Find Full Text PDF

Electromagnetic whistler-mode chorus waves are a key driver of variations in energetic electron fluxes in the Earth's magnetosphere through the wave-particle interaction. Traditionally understood as a diffusive process, these interactions account for long-term electron flux variations (> several minutes). However, theories suggest that chorus waves can also cause rapid (< 1 s) electron acceleration and significant flux variations within less than a second through a nonlinear wave-particle interaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!