In this study, iron-calcium material (FC) and hickory-cattail biochar (BC) were applied to prepare composite material (BF), which was used to repair the combined pollution of cadmium and arsenic in paddy soil to reduce the content of cadmium (Cd) and arsenic (As) in rice grain. Soil pore water, rhizosphere soil, bulk soil, rice plants, and root iron plaque samples were collected during the growth period of rice in a pot experiment to explore the effects and mechanism of FC, BC, and BF on the bioavailability of Cd and As in paddy soil and their contents in plants. The results showed that biochar could significantly ( < 0.05) increase the pH value of bulk soil (0.55-0.66 units) and rhizosphere soil (0.28-0.36 units) and elevate the soil dissolved organic carbon (DOC) content. FC material could significantly ( < 0.05) reduce the pH of bulk soil (0.14-0.27 units) and rhizosphere soil (0.38-0.41 units), as well as the soil DOC content. Iron-calcium materials and composite could simultaneously reduce the contents of available Cd and As in soil pore water, rhizosphere soil, and bulk soil, whereas biochar could reduce the content of Cd but increase the content of As. Among them, a 1% addition of composite had the best effect. The available Cd and As in soil decreased by 41.8%-48.2% and 6.1%-10.1%, respectively. Biochar, iron-calcium materials, and composites improved plant biomass (dry weight of root, stem, leaf, and grain). For example, the dry weights of rice grains under these treatments were higher (48.5%-184.0%) than that of CK, as was the root iron plaque content (7.5%-13.6%). Compared with that in the CK, biochar could effectively reduce the Cd content in rice grain by 21.0%-26.1%. Iron-calcium material and composite could simultaneously reduce the Cd and As contents in rice grain. Among them, the BF treatment had the best effect on the reduction of Cd and As in rice grain, with a decrease of 36.9%-42.0% and 40.4%-44.4%, respectively. The Cd and As contents in rice grain were lower than the national standard values (GB 2762-2017).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.202301079 | DOI Listing |
Food Chem X
January 2025
Key Laboratory of Bulk Grain and Oil Deep Processing (Ministry of Education), Department of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
Parboiled rice can effectively retain Se during milling. In this study, Se-enriched rice grains were sprayed with three different concentrations of bioSeNPs fertilizer on the leaves at heading stage and then processed into parboiled and milled rice. The aim was to investigate the effects of parboiling on Se speciation, texture, microstructure, taste, and flavor of cooked rice.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Department of Biosciences, University of Milan (UNIMI), Milan, Italy.
Oryza sativa is one of the most important crops and a food source for billions of people. Anthropic global warming, soil erosion, and unstable environmental conditions affect both its vegetative and reproductive growth, and consequently the final yield of its cultivation. The reproductive phase starts with the transition of apical meristem from vegetative to reproductive, which develops into a panicle, proceeds through the differentiation of the floret, and, after fertilization, the filling of the grain.
View Article and Find Full Text PDFPlant Dis
January 2025
LSU AgCenter, Plant Pathology and Crop Physiology, Baton Rouge, Louisiana, United States.
In July 2023, panicle and leaf blight-like symptoms were observed from the rice () variety, PVL03, in research field plots in Louisiana (Rayne, LA 70578, USA; 30.21330⁰ N, 92.37309⁰ W).
View Article and Find Full Text PDFFront Plant Sci
January 2025
Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.
Introduction: Huruan1212 (HR1212) is well-regarded for its superior eating and cooking quality in the lower reaches of the Yangtze River in China. Still, its high susceptibility to rice panicle blast and lack of fragrance have limited its further spread and utilization. and are two dominant genes known for their stable broad-spectrum resistance against rice blast fungus , while is the crucial gene that regulates rice aroma.
View Article and Find Full Text PDFNatl Sci Rev
February 2025
State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China.
Excessive temperatures during grain filling can compromise endosperm starch biosynthesis and decrease grain quality and yield in rice. However, the molecular mechanisms underlying these remain unclear. Here, we show that heat shock protein OsHsp40-1 interacts with and elevates the ATPase activity of OsHsp70-2 in rice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!