Background And Purpose: MS is a chronic progressive, idiopathic, demyelinating disorder whose diagnosis is contingent on the interpretation of MR imaging. New MR imaging lesions are an early biomarker of disease progression. We aimed to evaluate a machine learning model based on radiomics features in predicting progression on MR imaging of the brain in individuals with MS.
Materials And Methods: This retrospective cohort study with external validation on open-access data obtained full ethics approval. Longitudinal MR imaging data for patients with MS were collected and processed for machine learning. Radiomics features were extracted at the future location of a new lesion in the patients' prior MR imaging ("prelesion"). Additionally, "control" samples were obtained from the normal-appearing white matter for each participant. Machine learning models for binary classification were trained and tested and then evaluated the external data of the model.
Results: The total number of participants was 167. Of the 147 in the training/test set, 102 were women and 45 were men. The average age was 42 (range, 21-74 years). The best-performing radiomics-based model was XGBoost, with accuracy, precision, recall, and F1-score of 0.91, 0.91, 0.91, and 0.91 on the test set, and 0.74, 0.74, 0.74, and 0.70 on the external validation set. The 5 most important radiomics features to the XGBoost model were associated with the overall heterogeneity and low gray-level emphasis of the segmented regions. Probability maps were produced to illustrate potential future clinical applications.
Conclusions: Our machine learning model based on radiomics features successfully differentiated prelesions from normal-appearing white matter. This outcome suggests that radiomics features from normal-appearing white matter could serve as an imaging biomarker for progression of MS on MR imaging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285987 | PMC |
http://dx.doi.org/10.3174/ajnr.A8104 | DOI Listing |
Radiat Oncol
January 2025
Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
Background: Several studies have suggested that lung tissue heterogeneity is associated with overall survival (OS) in lung cancer. However, the quantitative relationship between the two remains unknown. The purpose of this study is to investigate the prognostic value of whole lung-based and tumor-based radiomics for OS in LA-NSCLC treated with definitive radiotherapy.
View Article and Find Full Text PDFBMC Med Imaging
January 2025
Department of Thoracic Surgery, The Fifth Clinical Medical College of Henan, University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, 450003, China.
Objective: In clinical practice, diagnosing the benignity and malignancy of solid-component-predominant pulmonary nodules is challenging, especially when 3D consolidation-to-tumor ratio (CTR) ≥ 50%, as malignant ones are more invasive. This study aims to develop and validate an AI-driven radiomics prediction model for such nodules to enhance diagnostic accuracy.
Methods: Data of 2,591 pulmonary nodules from five medical centers (Zhengzhou People's Hospital, etc.
Acad Radiol
January 2025
Department of Radiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, Zhejiang Province, China (Y.R., W.L., Y.Z., S.K., F.C.). Electronic address:
Rationale And Objectives: Non-invasive assessment of renal fibrosis in patients with chronic kidney disease (CKD) remains a clinical challenge. This study aims to integrate radiomics and clinical factors to develop an end-to-end pipeline for predicting interstitial fibrosis (IF) in CKD patients.
Materials And Methods: This retrospective study included 80 patients with CKD, with 53 patients in training set and 27 patients in test set.
J Immunother Cancer
January 2025
Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
Background: Numerous studies have demonstrated limited survival benefits of transarterial chemoembolization (TACE) alone in the treatment of intermediate-stage hepatocellular carcinoma (HCC) beyond up-to-seven criteria. The advent of immunotherapy, particularly immune checkpoint inhibitors (ICIs), has opened new avenues for HCC treatment. However, TACE combined with ICIs has not been investigated for patients with intermediate-stage HCC beyond the up-to-seven criteria.
View Article and Find Full Text PDFPhys Med Biol
January 2025
Radiological Sciences, University of California Los Angeles, 924 Westwood Blvd, Los Angeles, California, 90095, UNITED STATES.
Objective: The study aims to systematically characterize the effect of CT parameter variations on images and lung radiomic and deep features, and to evaluate the ability of different image harmonization methods to mitigate the observed variations.
Approach: A retrospective in-house sinogram dataset of 100 low-dose chest CT scans was reconstructed by varying radiation dose (100%, 25%, 10%) and reconstruction kernels (smooth, medium, sharp). A set of image processing, convolutional neural network (CNNs), and generative adversarial network-based (GANs) methods were trained to harmonize all image conditions to a reference condition (100% dose, medium kernel).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!