Non-invasively evaluating gene expression products in human pre-implantation embryos remains a significant challenge. Here, we develop a non-invasive method for comprehensive characterization of the extracellular RNAs (exRNAs) in a single droplet of spent media that was used to culture human in vitro fertilization embryos. We generate the temporal extracellular transcriptome atlas (TETA) of human pre-implantation development. TETA consists of 245 exRNA sequencing datasets for five developmental stages. These data reveal approximately 4,000 exRNAs at each stage. The exRNAs of the developmentally arrested embryos are enriched with the genes involved in negative regulation of the cell cycle, revealing an exRNA signature of developmental arrest. Furthermore, a machine-learning model can approximate the morphology-based rating of embryo quality based on the exRNA levels. These data reveal the widespread presence of coding gene-derived exRNAs at every stage of human pre-implantation development, and these exRNAs provide rich information on the physiology of the embryo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10794780 | PMC |
http://dx.doi.org/10.1016/j.xgen.2023.100464 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!