Empowering mitochondrial metabolism: Exploring L-lactate supplementation as a promising therapeutic approach for metabolic syndrome.

Metabolism

Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai 201299, PR China. Electronic address:

Published: March 2024

Mitochondrial dysfunction plays a critical role in the pathogenesis of metabolic syndrome (MetS), affecting various cell types and organs. In MetS animal models, mitochondria exhibit decreased quality control, characterized by abnormal morphological structure, impaired metabolic activity, reduced energy production, disrupted signaling cascades, and oxidative stress. The aberrant changes in mitochondrial function exacerbate the progression of metabolic syndrome, setting in motion a pernicious cycle. From this perspective, reversing mitochondrial dysfunction is likely to become a novel and powerful approach for treating MetS. Unfortunately, there are currently no effective drugs available in clinical practice to improve mitochondrial function. Recently, L-lactate has garnered significant attention as a valuable metabolite due to its ability to regulate mitochondrial metabolic processes and function. It is highly likely that treating MetS and its related complications can be achieved by correcting mitochondrial homeostasis disorders. In this review, we comprehensively discuss the complex relationship between mitochondrial function and MetS and the involvement of L-lactate in regulating mitochondrial metabolism and associated signaling pathways. Furthermore, it highlights recent findings on the involvement of L-lactate in common pathologies of MetS and explores its potential clinical application and further prospects, thus providing new insights into treatment possibilities for MetS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.metabol.2024.155787DOI Listing

Publication Analysis

Top Keywords

metabolic syndrome
12
mitochondrial function
12
mitochondrial metabolism
8
mitochondrial
8
mitochondrial dysfunction
8
treating mets
8
involvement l-lactate
8
mets
7
metabolic
5
empowering mitochondrial
4

Similar Publications

Cardiovascular-kidney-metabolic (CKM) syndrome is the association between obesity, diabetes, CKD (chronic kidney disease), and cardiovascular disease. GDF-15 mainly acts through the GFRAL (Glial cell line-derived neurotrophic factor Family Receptor Alpha-Like) receptor. GDF-15 and GDFRAL complex act mainly through RET co-receptors, further activating Ras and phosphatidylinositol-3-kinase (PI3K)/Akt pathways through downstream signaling.

View Article and Find Full Text PDF

To examine the changes in obesity-related hormones and metabolic syndrome markers in male high school students with obesity following a weekend-focused moderate- or high-intensity exercise program at the recommended weekly physical activity level, or a program of regular exercise 3 times a week at moderate intensity, over a 10-week period. Forty-eight male high school students who were obese with a body fat percentage of ≥25% were randomly assigned to one of three groups: a regular moderate-intensity exercise group (n=17) that freely selected and performed moderate-intensity aerobic and resistance training exercises, every Monday, Wednesday, and Friday, for a total of 150-300 min/wk; a weekend-focused moderate-intensity exercise group (n=15) that freely selected and performed aerobic and resistance training exercises every Saturday for 150-300 min; and a week-end-focused high-intensity exercise group (n=16) that freely selected and performed aerobic and resistance training exercises every Sunday for 75-150 min. Insulin and leptin levels significantly decreased in all the groups, with the greatest reduction in the regular exercise group.

View Article and Find Full Text PDF

Metabolic-dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease in the Western world. MASLD-associated cirrhosis prevalence is on the rise along with the obesity and metabolic syndrome epidemic. Genetic factors are included in the multi-hit model of MASLD pathogenesis and insulin-like growth factor-1 (IGF-1) has an important role.

View Article and Find Full Text PDF

Assessment of Risk Factors Leading to Amputation Among Diabetic Septic Foot Patients in Khartoum, Sudan.

Cureus

December 2024

Trauma and Orthopaedics, Gateshead Health National Health Services (NHS) Foundation Trust, Gateshead, GBR.

Introduction  Diabetes is a rapidly growing global health concern, with the World Health Organization (WHO) estimating that 300 million adults will have diabetes by 2025. This chronic condition is associated with complications, including nephropathy, retinopathy, neuropathy, cardiovascular disease, and diabetic foot ulcers (DFUs), which can lead to amputation. Diabetic septic foot (DSF), a severe form of diabetic foot disease, is defined by the WHO as the presence of infection, ulceration, or tissue destruction in the lower limb, often accompanied by neurological abnormalities, peripheral vascular disease, and metabolic complications of diabetes.

View Article and Find Full Text PDF

Objective: Incorporate sleep into a novel lifestyle intervention strategy in adolescents with Emerging symptoms of polycystic ovary syndrome (E-PCOS).

Design: A single-center cohort study.

Setting: University hospital-based clinic for adolescents with PCOS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!