Is the assimilation to a solid recovered fuel a viable solution for automobile shredder residues' management?

Environ Res

DIATI, Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Torino, Italy.

Published: April 2024

Directive 2000/53/EC and the European Circular Economy Package (2018) required the Member States to take all the necessary measures to reach the reuse-recycling goal of 85% for end-of-life vehicles (ELVs). In 2019, Europe achieved 89.6% of reuse-recycling, but most EC countries are still not completely compliant, Italy standing, for example, at only 84.2%. For this reason, actions are necessary to increase reuse-recycling for the waste generated in the operations of ELV shredding and separation, known as automobile shredded residues (ASRs). This study was aimed at assessing if the assimilation of ASRs to a solid recovered fuel (SRF) was a feasible solution. That would allow the waste to lose its status (end-of-waste, EoW), thus increasing the recycling rate. The assimilation of ASRs to SRFs requires the compliance with a series of parameters, namely net calorific value (NCV), content of chlorine (Cl), mercury (Hg) and selected heavy metals. The above-mentioned parameters were analyzed in the principal ASR fractions, namely textile, plastic and foam rubber, found in the samples collected during four sampling campaigns (2017-2021) performed at the same ELV treatment plant. Notwithstanding the great variability observed in the four samples, the results of the analyses revealed that the three fractions were compliant with NCV, Cl and Hg content. Conversely, the heavy metals' content was found a more critical parameter, in fact only the plastic fraction was suitable for SRF assimilation. Textiles presented criticality for the content of copper (Cu), nickel (Ni) and antimony (Sb). The heavy metals' contamination of foam rubber was found to be strongly related to particles' dimensions. A model which put particle size and metals' content into relationship was developed and validated. Removing particles of <40 mm significantly improved the quality of the material, however the content of Cu and Ni remained a critical issue for particles up to 200 mm. The SRF assimilation of the plastic fraction would increase the reuse-recycling rate of approx. 2.4-3.3%, thus allowing the achievement of the EC goals concerning the ELV management.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2024.118131DOI Listing

Publication Analysis

Top Keywords

solid recovered
8
recovered fuel
8
assimilation asrs
8
ncv content
8
foam rubber
8
heavy metals'
8
metals' content
8
content
5
assimilation
4
assimilation solid
4

Similar Publications

The consideration of scarcity and overexploitation of freshwater at the organizational level increased interest in the water footprint. The water footprint measures freshwater use for activities, taking into account water consumption and pollution contamination by classifying consumed water into groundwater and surface water (blue water), rainwater (green water), and polluted water (grey water). This study aims to identify a comprehensive water footprint inventory analysis for a denim washing organization and assess the grey water footprint (GWF) based on the effluent concentration of pollution indicators (chemical oxygen demand (COD), suspended solids (SS), ammonium nitrogen (NH4-N), and phenol) measured monthly in 2021.

View Article and Find Full Text PDF

Precise prefractionation of proteome samples is a potent method for realizing in-depth analysis in top-down proteomics. PEPPI-MS (Passively Eluting Proteins from Polyacrylamide gels as Intact species for MS), a gel-based sample fractionation method, enables high-resolution proteome fractionation based on molecular weight by highly efficient extraction of proteins from polyacrylamide gels after SDS-PAGE separation. Thereafter it is essential to effectively remove contaminants such as CBB and SDS from the PEPPI fraction prior to mass spectrometry.

View Article and Find Full Text PDF

Vascularized composite allograft deceased donation in the United States.

Front Transplant

January 2025

Organ Donation Services, New England Donor Services, Waltham, MA, United States.

Vascularized composite allograft (VCA) transplantation represents a significant advancement in reconstructive surgery and offers hope to individuals who experienced congenital disorders or severe tissue injuries to restore physical appearance, function, and enhance quality of life. VCA recovery introduces complexities to conventional solid organ recovery, and there remain concerns regarding the potential impact of VCA recovery on non-VCA organs for transplant. The current retrospective study examines deceased donor characteristics and observed-to-expected (O/E) organ yield ratios for 51 VCA donors recovered in the US between July 4, 2014 and March 31, 2024, compared with a contemporary cohort of non-VCA donors recovered in 2023.

View Article and Find Full Text PDF

Dynamic high-pressure microfluidization (DHPM) is an emerging treatment technology and has been widely used for the recovery of natural polysaccharides. The aim of the present contribution is to discuss the DHPM-assisted extraction and processing of polysaccharides from some foods and by-products by reviewing the instrument and working principle, procedures, key parameters, and effects of DHPM on the structures, food properties, and bioactivities of resulting polysaccharides. It was found that a DHPM instrument with Z-type chamber is preferable for extracting polysaccharides, and a DHPM with Y-type chamber is applicable for processing polysaccharides.

View Article and Find Full Text PDF

A ternary deep eutectic solvent for efficient biomass fractionation and lignin stabilization.

Int J Biol Macromol

January 2025

Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China. Electronic address:

The efficient isolation and lignin stabilization are critical to the fractionation process of lignocellulosic biomass, enabling the subsequent valorization of both carbohydrates and lignin. In this study, a ternary deep eutectic solvent pretreatment system with outstanding reusability has been developed. Under optimal conditions (ChCl: MT: p-TsOH = 1:1:0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!