As an emerging environmental pollutant, microplastics (MPs) have received widespread attention. Recently, studies examining microplastic pollution in plateau lakes have been increasing, but few have examined the distributions, sources, and fates of MPs in different plateau areas. In this work, the abundances and characteristics of MPs in surface waters and sediments in lakes of the Qinghai-Tibet Plateau (QTP) and Yunnan-Guizhou Plateau (YGP) were systematically investigated. The abundances of MPs in the lakes of the QTP ranges within 0.05-1.8 n/L in surface waters and 10-2643.7 n/kg in sediments. In the lakes of the YGP, the abundances of MPs ranged within 1.3-10.1 n/L in surface waters and 171.7-4260 n/kg in sediments. The dominant shape, color, and size class of MPs were fiber, transparent, and 0-0.5 mm in plateau lakes, respectively. MPs were mainly composed of polypropylene, polyethylene, and polyethylene terephthalate polymers. The different sources of MPs in the QTP and YGP lakes were mainly due to differences in human activities. The primary sources of microplastic pollution in the lakes of the QTP were tourism and atmospheric transport, while sewage discharge, agriculture, and fishing activities were the main sources of MPs in urban lakes of the YGP. Although the level of microplastic pollution in plateau lakes was relatively low, the sources should be identified and monitored so that the effects and extent of microplastic pollution in these fragile environments can be fully understood. This study provides a valuable dataset and theoretical basis for subsequent research on microplastic pollution in plateau lakes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.169978 | DOI Listing |
Innovation (Camb)
January 2025
Institute for Ecological Research and Pollution Control of Plateau Lakes, Yunnan University, Kunming 650500, China.
Environ Res
January 2025
Key laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China. Electronic address:
Global change stressors, including climate warming, eutrophication, and small-sized omnivorous fish, may exert interactive effects on the food webs and functioning of shallow lakes. Periphyton plays a central role in the primary production and nutrient cycling of shallow lakes but constitutes a complex community composed of eukaryotes and prokaryotes that may exhibit different responses to multiple environmental stressors with implications for the projections of the effects of global change on shallow lakes. We analyzed the effects of warming, nutrient enrichment, small omnivorous fish and their interactions on eukaryotic and prokaryotic periphyton structures in shallow lake mesocosms.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratoire des Sciences du Climat et de l' Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France.
Organic carbon burial (OCB) in lakes, a critical component of the global carbon cycle, surpasses that in oceans, yet its response to global warming and associated feedbacks remains poorly understood. Using a well-dated biomarker sequence from the southern Tibetan Plateau and a comprehensive analysis of Holocene total organic carbon variations in lakes across the region, here we demonstrate that lake OCB significantly declined throughout the Holocene, closely linked to changes in temperature seasonality. Process-based land surface model simulations clarified the key impact of temperature seasonality on OCB in lakes: increased seasonality in the early Holocene saw warmer summers enhancing ecosystem productivity and organic matter deposition, while cooler winters improved organic matter preservation.
View Article and Find Full Text PDFEnviron Res
January 2025
College of Energy and Environment, Inner Mongolia University of Science and Technology,Baotou, 014010, PR China; Collaborative Innovation Center of Autonomous Region for Ecological Protection and Comprehensive Utilization in the Inner Mongolia Section of the Yellow River Basin, Baotou, 014010, PR China. Electronic address:
The coexistence of different microbial communities is fundamental to the sustainability of many ecosystems, yet our understanding of the relationships among microbial communities in plateau cold-region lakes affected by seasonal ice cover remains limited. This research involved investigating three lakes in the Inner Mongolia segment of the Yellow River basin during frozen and unfrozen periods in two habitats: water bodies and sediments. The research examined the composition and function of bacteria, archaea, and fungi across different times and habitats within the basin, their response to environmental variables in water and sediment, and inter-domain interactions between bacteria-archaea and bacteria-fungi were compared using interdomain ecological network (IDEN).
View Article and Find Full Text PDFNanoscale
January 2025
Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
The detection of heavy metals serves as a defence measure to safeguard the well-being of the human body and the ecological environment. Electrochemical sensors (ECS) offer significant benefits such as exceptional sensitivity, excellent selectivity, affordability, and portability. This review begins by elucidating the ECS principles and delves into recent advancements in the field of heavy metal detection, including the use of metal nanoparticles, carbon-based nanomaterials, and organic framework materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!