Mechanical Ventilation, Past, Present, and Future.

Anesth Analg

Department of Anesthesia and Pain Management, University Health Network - Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada.

Published: February 2024

Mechanical ventilation (MV) has played a crucial role in the medical field, particularly in anesthesia and in critical care medicine (CCM) settings. MV has evolved significantly since its inception over 70 years ago and the future promises even more advanced technology. In the past, ventilation was provided manually, intermittently, and it was primarily used for resuscitation or as a last resort for patients with severe respiratory or cardiovascular failure. The earliest MV machines for prolonged ventilatory support and oxygenation were large and cumbersome. They required a significant amount of skills and expertise to operate. These early devices had limited capabilities, battery, power, safety features, alarms, and therefore these often caused harm to patients. Moreover, the physiology of MV was modified when mechanical ventilators moved from negative pressure to positive pressure mechanisms. Monitoring systems were also very limited and therefore the risks related to MV support were difficult to quantify, predict and timely detect for individual patients who were necessarily young with few comorbidities. Technology and devices designed to use tracheostomies versus endotracheal intubation evolved in the last century too and these are currently much more reliable. In the present, positive pressure MV is more sophisticated and widely used for extensive period of time. Modern ventilators use mostly positive pressure systems and are much smaller, more portable than their predecessors, and they are much easier to operate. They can also be programmed to provide different levels of support based on evolving physiological concepts allowing lung-protective ventilation. Monitoring systems are more sophisticated and knowledge related to the physiology of MV is improved. Patients are also more complex and elderly compared to the past. MV experts are informed about risks related to prolonged or aggressive ventilation modalities and settings. One of the most significant advances in MV has been protective lung ventilation, diaphragm protective ventilation including noninvasive ventilation (NIV). Health care professionals are familiar with the use of MV and in many countries, respiratory therapists have been trained for the exclusive purpose of providing safe and professional respiratory support to critically ill patients. Analgo-sedation drugs and techniques are improved, and more sedative drugs are available and this has an impact on recovery, weaning, and overall patients' outcome. Looking toward the future, MV is likely to continue to evolve and improve alongside monitoring techniques and sedatives. There is increasing precision in monitoring global "patient-ventilator" interactions: structure and analysis (asynchrony, desynchrony, etc). One area of development is the use of artificial intelligence (AI) in ventilator technology. AI can be used to monitor patients in real-time, and it can predict when a patient is likely to experience respiratory distress. This allows medical professionals to intervene before a crisis occurs, improving patient outcomes and reducing the need for emergency intervention. This specific area of development is intended as "personalized ventilation." It involves tailoring the ventilator settings to the individual patient, based on their physiology and the specific condition they are being treated for. This approach has the potential to improve patient outcomes by optimizing ventilation and reducing the risk of harm. In conclusion, MV has come a long way since its inception, and it continues to play a critical role in anesthesia and in CCM settings. Advances in technology have made MV safer, more effective, affordable, and more widely available. As technology continues to improve, more advanced and personalized MV will become available, leading to better patients' outcomes and quality of life for those in need.

Download full-text PDF

Source
http://dx.doi.org/10.1213/ANE.0000000000006701DOI Listing

Publication Analysis

Top Keywords

positive pressure
12
mechanical ventilation
8
ventilation
8
ccm settings
8
monitoring systems
8
settings advances
8
area development
8
patient outcomes
8
patients
6
technology
5

Similar Publications

Background: Chronic spontaneous urticaria (CSU) appears to share some pathomechanisms with metabolic syndrome (MS), such as proinflammatory state, increased oxidative stress, changes in adipokine profile, and coagulation system activation.

Aim And Objectives: To evaluate clinical and laboratory parameters of MS in CSU patients and to assess relationship of MS with duration and severity of CSU, Ig-E, thyroid-stimulating hormone (TSH), C-reactive protein (CRP), and autologous serum skin test (ASST).

Materials And Methods: A hospital-based cross-sectional study was conducted on 131 CSU cases and 131 controls who were age- and sex-matched.

View Article and Find Full Text PDF

Bone is one of the hardest tissues in the human body, but it can undergo microcracks under long-term and periodic mechanical loads. The Newton iterative method was used to calculate the steady state, and the effects of different inlet and outlet pressures, trabecular gap width and height, and microcrack's depth and width on the fluid shear stress (FSS) were studied, and the gradient of FSS inside the microcrack was analyzed. The results show that the pressure difference and trabecular gap heigh are positively correlated with the FSS (the linear correlation coefficients were 0.

View Article and Find Full Text PDF

Background: Solitary fibrous tumors (SFTs) of the pleura are usually benign. We present a case of SFT of the pleura which grew rapidly after slow long-term progression.

Case Presentation: A 78-year-old man was referred to our hospital for left-sided back pain and shortness of breath.

View Article and Find Full Text PDF

Interactions Between Toxic Metals and Serum Micronutrient Level in Auto-mechanics in Ibadan Metropolis, Nigeria: a Pilot study.

Biol Trace Elem Res

January 2025

Laboratory for Toxicology and Micronutrient Metabolism, Chemical Pathology Department, College of Medicine, University of Ibadan, Ibadan, Nigeria.

Auto-mechanics who often work without safety measures are vulnerable to the harmful effects of toxic metals like lead (Pb) and cadmium (Cd). These toxic metals exert their deleterious effect by interacting with the micronutrients at their primary site of action. This study aimed to investigate the effects of toxic metal exposure on serum micronutrient levels of auto-mechanics in Nigeria.

View Article and Find Full Text PDF

To investigate the correlation between the density and volume of epicardial adipose tissue(EAT)and acute coronary syndrome (ACS). This study included 355 subjects (mean age: 60.65 ± 9.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!