Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The last 2 decades have brought important developments in anesthetic technology, including robotic anesthesia. Anesthesiologists titrate the administration of pharmacological agents to the patients' physiology and the needs of surgery, using a variety of sophisticated equipment (we use the term "pilots of the human biosphere"). In anesthesia, increased safety seems coupled with increased technology and innovation. This article gives an overview of the technological developments over the past decades, both in terms of pharmacological and mechanical robots, which have laid the groundwork for robotic anesthesia: target-controlled drug infusion systems, closed-loop administration of anesthesia and sedation, mechanical robots for intubation, and the latest development in the world of communication with the arrival of artificial intelligence (AI)-derived chatbots are presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1213/ANE.0000000000006835 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!