A self-driven, microfluidic, integrated-circuit biosensing chip for detecting four cardiovascular disease biomarkers.

Biosens Bioelectron

Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan; Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 30013, Taiwan. Electronic address:

Published: April 2024

AI Article Synopsis

  • * A new integrated microfluidic system (IMS) was developed to quickly measure four key CVD biomarkers—NT-proBNP, fibrinogen, cTnI, and CRP—using advanced technology, including aptamer-coated electrodes and integrated circuits.
  • * The IMS efficiently processes blood samples, offering rapid biomarker evaluation within 15 minutes, and demonstrates accuracy above 80%, making it a promising tool for CVD risk assessment and personalized healthcare solutions.

Article Abstract

Cardiovascular diseases (CVDs) claimed the lives of nearly 21 million people worldwide in 2021, accounting for 30% of global deaths. However, one in five CVD patients is unaware that they have the disease, emphasizing the need for accurate biomarker monitoring. Herein we developed an integrated microfluidic system (IMS) for rapid quantification of four CVD biomarkers, including N-terminal pro B-type natriuretic peptide (NT-proBNP), fibrinogen, cardiac troponin I (cTnI), and C-reactive protein (CRP)- via aptamer-coated interdigitated electrodes (IDE) with integrated circuits (IC) and a self-driven IMS for sample treatment. The device was composed of plasma filtration, metering, and fluidic delay modules, and the former could extract 45% of plasma from a 20-μL blood sample; the metering module could quantify 5 μL of plasma within 90 s. Subsequently, the plasma was transported to a detection chamber, where IC-based IDE sensors made measurements within 5 min. The entire 15-min process allowed us to evaluate biomarkers across a wide dynamic range: NT-proBNP (0.1-10,000 pg/mL), fibrinogen (50-1,000 mg/dL), cTnI (0.1-10,000 pg/mL), and CRP (0.5-9 mg/L). Given that spiked blood samples were measured with reasonable accuracy (>80%), the IMS could see utility in CVD risk assessment and personalized medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2023.115931DOI Listing

Publication Analysis

Top Keywords

self-driven microfluidic
4
microfluidic integrated-circuit
4
integrated-circuit biosensing
4
biosensing chip
4
chip detecting
4
detecting cardiovascular
4
cardiovascular disease
4
disease biomarkers
4
biomarkers cardiovascular
4
cardiovascular diseases
4

Similar Publications

Slippery liquid-infused porous surfaces (SLIPS) have promising applications in chip laboratories, nanofriction power generation, and microfluidics due to their excellent properties such as good hydrophobicity and low adhesion. However, the self-driven stability of conventionally lubricated surfaces is not high, and the velocity of liquid droplets is difficult to regulate. This greatly limits the potential applications of SLIPS.

View Article and Find Full Text PDF

Biomarkers and their concentration levels are critical indicators of metabolomics for clinical applications. Rapid and sensitive analysis methods are essential for realizing timely and efficient quantitation of those significant biomarkers. In this work, a self-driven microfluidic immunosensor was developed for rapid all-in-one separation, enrichment, and detection of biomarkers.

View Article and Find Full Text PDF

Self-driven microfluidic systems have attracted significant attention and demonstrated great potential in the field of point-of-care (POC) testing due to their device simplicity, low power consumption, increased portability, and reduced sample consumption. To develop POC detection chips with diverse characteristics that meet different requirements, there is a strong demand for feasible strategies that enable easy operation and reduce processing time. Here, a one-step processing approach using femtosecond laser direct writing technology was proposed to fabricate a capillary-actuated POC microfluidic chip.

View Article and Find Full Text PDF

Materials Characterization of Stereolithography 3D Printed Polymer to Develop a Self-Driven Microfluidic Device for Bioanalytical Applications.

ACS Appl Bio Mater

December 2024

Department of Metallurgical, Materials, and Biomedical Engineering (MMBME), The University of Texas at El Paso (UTEP), 500 West University Avenue, El Paso, Texas 79968, United States.

Stereolithography (SLA) 3D printing is a rapid prototyping technique and reproducible manufacturing platform, which makes it a useful tool to develop advanced microfluidic devices for bioanalytical applications. However, limited information exists regarding the physical, chemical, and biological properties of the photocured polymers printed with SLA. This study demonstrates the characterization of a commercially available SLA 3D printed polymer to evaluate the potential presence of any time-dependent changes in material properties that may affect its ability to produce functional, capillary-action microfluidic devices.

View Article and Find Full Text PDF

Dean vortex-enhanced blood plasma separation in self-driven spiral microchannel flow with cross-flow microfilters.

Biomicrofluidics

January 2024

Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA.

Point-of-care (POC) diagnostic devices have been developing rapidly in recent years, but they are mainly using saliva instead of blood as a test sample. A highly efficient self-separation during the self-driven flow without power systems is desired for expanding the point-of-care diagnostic devices. Microfiltration stands out as a promising technique for blood plasma separation but faces limitations due to blood cell clogging, resulting in reduced separation speed and efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: