Real needle for minimal invasive procedures training using motion sensors and optical flow.

Comput Biol Med

Dpt. Computers and Automation, University of Salamanca, Plaza de los Caídos S/N, Salamanca, 37008, Spain. Electronic address:

Published: March 2024

Minimally invasive percutaneous insertion procedures are widely used techniques in medicine. Their success is highly dependent on the skills of the practitioner. This paper presents a haptic simulator for training in these procedures, whose key component is a real percutaneous insertion needle with a sensory system incorporated to track its 3D location at every instant. By means of the proposed embedded vision system, the attitude (spatial orientation) and depth of insertion of a real needle are estimated. The proposal is founded on a novel depth estimation procedure based on optical flow techniques, complemented by sensory fusion techniques with the attitude calculated with data from an Inertial Measurement Unit (IMU) sensor. This procedure allows estimating the needle attitude with an accuracy of tenths of a degree and the displacement with an accuracy of millimeters. The computational algorithm runs on an embedded computer with real-time constraints for tracking the movement of a real needle. This haptic needle location data is used to reproduce the movement of a virtual needle within a simulation app. As a fundamental result, an ergonomic and realistic training simulator has been successfully constructed for healthcare professionals to acquire the mental model and motor skills necessary to practice percutaneous procedures successfully.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2024.107935DOI Listing

Publication Analysis

Top Keywords

real needle
12
optical flow
8
percutaneous insertion
8
needle
6
real
4
needle minimal
4
minimal invasive
4
procedures
4
invasive procedures
4
procedures training
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!