Hollow structured CdS@ZnInS Z-scheme heterojunction for bifunctional photocatalytic hydrogen evolution and selective benzylamine oxidation.

J Colloid Interface Sci

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China.

Published: April 2024

AI Article Synopsis

  • Photocatalytic hydrogen evolution (PHE) faces challenges like poor light absorption and fast recombination of electron-hole pairs, making it less efficient.
  • Traditional PHE methods use sacrificial reagents to help with the reaction, but this approach can be costly.
  • The study introduces a new type of photocatalyst, a hollow structured CdS @ZnInS with a bifunctional cocatalyst, achieving high efficiency in both hydrogen production and benzylamine oxidation, showcasing its promising design for future photocatalysts.

Article Abstract

Photocatalytic hydrogen evolution (PHE) is frequently constrained by inadequate light utilization and the rapid combination rate of the photogenerated electron-hole pairs. Additionally, conventional PHE processes are often facilitated by the addition of sacrificial reagents to consume photo-induced holes, which makes this approach economically unfavorable. Herein, we designed a spatially separated bifunctional cocatalyst decorated Z-scheme heterojunction of hollow structured CdS (HCdS) @ZnInS (ZIS), which was prepared by a sacrificial hard template method followed by photo-deposition. Consequently, PdO@HCdS@ZIS@Pt exhibited efficient PHE (86.38 mmol·g·h) and benzylamine (BA) oxidation coupling (164.75 mmol·g·h) with high selectivity (97.34 %). The unique hollow core-shelled morphology and bifunctional cocatalyst loading in this work hold great potential for the design and synthesis of bifunctional Z-scheme photocatalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2023.12.175DOI Listing

Publication Analysis

Top Keywords

hollow structured
8
z-scheme heterojunction
8
photocatalytic hydrogen
8
hydrogen evolution
8
benzylamine oxidation
8
bifunctional cocatalyst
8
structured cds@znins
4
cds@znins z-scheme
4
bifunctional
4
heterojunction bifunctional
4

Similar Publications

In situ growth of defective ZIF-8 on TEMPO-oxidized cellulose nanofibrils for rapid response release of curcumin in food preservation.

Carbohydr Polym

March 2025

Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China. Electronic address:

Uncontrolled release of active agents in active packaging reduces antimicrobial efficacy, hindering the effective protection of perishable products from microbial infection. Herein, a novel defective engineering was proposed to design defective and hollow ZIF-8 structures grown on TEMPO oxidized cellulose nanofibrils (TOCNFs) and use them as fast-reacting nanocarriers for loading and controlled release curcumin (Cur) in sodium alginate (SA) active packaging systems (CZT-Cur-SA). By employing stable chelation between tannic acid (TA) and ZIF-8 zinc ions, the connections between zinc ions and imidazole ligands were severed to form a loose and hollow structure, which facilitates the rapid reaction and release of active ingredients triggered by pH changes in the microenvironment.

View Article and Find Full Text PDF

The conversion of carbon dioxide (CO) into carbon-neutral fuels using solar energy is crucial for achieving energy sustainability. However, the high carrier charge recombination and low CO adsorption capacity of the photocatalysts present significant challenges. In this paper, a TAPB-COF@ZnInS-30 (TAPB-COFZ-30) heterojunction photocatalyst was constructed by growth of ZnInS (ZIS) on a hollow covalent organic framework (HCOF) with a hollow core-shell structure for CO to CO conversion.

View Article and Find Full Text PDF

Li metal batteries (LMBs), particularly with a limited Li metal anode and a 5V-class cathode, offer significantly higher energy density compared to the state-of-the-art Li-ion batteries. However, the limited Li anode poses severe challenges to cycling stability due to low efficiency and large volume expansion issues associated with Li. Herein, we design a lightweight and functionalized host composed of Sn nanoparticles embedded into necklace-like B,N,F-doped carbon macroporous fibers (Sn@B/N/F-CMFs) toward anode-less 5V-class LMBs.

View Article and Find Full Text PDF

One of the key technical challenges before the widespread adoption of proton exchange membrane fuel cells (PEMFCs) is increasing the durability of the platinum catalyst layer to meet a target of 8000 operating hours with only a 10% loss of performance. Carbon corrosion, one of the primary mechanisms of degradation in fuel cells, has attracted attention from researchers interested in solving the durability problem. As such, the development of catalyst supports to avoid this issue has been a focus in recent years, with interest in hydrophobic supports such as highly graphitized carbons.

View Article and Find Full Text PDF

3D-Printed Acrylated Soybean Oil Scaffolds with Vitrimeric Properties Reinforced by Tellurium-Doped Bioactive Glass.

Polymers (Basel)

December 2024

Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

In this study, we present novel, vitrimeric and biobased scaffolds that are designed for hard tissue applications, composed of acrylated, epoxidized soybean oil (AESO) and reinforced with bioactive glass that is Tellurium doped (BG-Te) and BG-Te silanized, to tune the mechanical and antibacterial properties. The manufacture's method consisted of a DLP 3D-printing method, enabling precise resolution and the possibility to manufacture a hollow and complex structure. The resin formulation was optimized with a biobased, reactive diluent to adjust the viscosity for an optimal 3D-printing process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!