Bands renormalization and superconductivity in the strongly correlated Hubbard model using composite operators method.

J Phys Condens Matter

Institut de Physique Théorique, Université Paris Saclay, CEA CNRS, Orme des Merisiers, 91190 Gif-sur-Yvette Cedex, France.

Published: March 2024

We use the composite operator method (COM) to analyze the strongly correlated repulsive Hubbard model, investigating the effect of nearest-neighbor hoppings up to fourth order on a square lattice. We consider two sets of self-consistent equations, one enforcing the Pauli principle and the other imposing charge-charge, spin-spin, and pair-pair correlations using a decoupling scheme developed by Roth (1969451-9). We extract three distinct solutions from these equations: COM1 and COM2 by imposing the Pauli principle and one from Roth decoupling. An overview of the method studying the validity of particle-hole symmetry and the Luttinger theorem for each solution is presented. Additionally, we extend the initial basis to study superconductivity, concluding that it is induced by the Van Hove singularity. Finally, we include higher-order hoppings using realistic estimates for tight binding parameters and compare our results with ARPES measurements on cuprates.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ad1e07DOI Listing

Publication Analysis

Top Keywords

hubbard model
8
pauli principle
8
bands renormalization
4
renormalization superconductivity
4
superconductivity correlated
4
correlated hubbard
4
model composite
4
composite operators
4
operators method
4
method composite
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!