Nanomedicine often failed clinically to show therapeutic efficacy due to reduced particle circulation and enhanced capture by the reticuloendothelial system (RES), including the liver. Developing novel immunomodulatory surface coating can prevent macrophage capture and increase the particle circulation of the nanomedicine, resulting in higher therapeutic efficiency. Herein, we demonstrate the development of immunomodulatory small molecule (RZA15) with triazole functionality using copper-catalyzed click chemistry to conjugate onto spherical polystyrene nanoparticles using amide coupling reactions, achieving higher blood circulation and lesser macrophage uptake of the nanoconjugates. In this work, we evaluated the effectiveness of RZA15 coating for the enhanced circulation of polystyrene nanoparticles of 100 nm size, which is commonly utilized for various drug delivery applications, and compared with poly(ethylene)glycol (PEG) coatings. Several polystyrene nanoconjugate formulations were analyzed in vitro in normal and macrophage cells for cell viability and cellular uptake studies. In vitro studies demonstrated lesser macrophage uptake of the nanoconjugates following RZA15 coating. Finally, in vivo, blood-circulation, pharmacokinetics, and biodistribution studies were performed in the C57BL/6J mouse model that endorsed the substantial role of RZA15 in preventing liver and spleen capture and results in extended circulation. Coating immunomodulatory small molecules to nanoparticles can severely enhance the potential therapeutic effects of nanomedicine at lower doses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1748-605X/ad1df8 | DOI Listing |
Nanotoxicology
January 2025
Infection, Inflammation and Repair, Faculty of Medicine, University of Southampton, Southampton, UK.
The role of surfactant proteins A and D (SP-A and SP-D) in lung clearance and translocation to secondary organs of inhaled nanoparticles was investigated by exposing SP-A and SP-D knockout (AKO and DKO) and wild type (WT) mice nose-only for 3 hours to an aerosol of 20 nm gold nanoparticles (AuNPs). Animals were euthanised at 0-, 1-, 7- and 28-days post-exposure. Analysis by inductively coupled plasma mass spectrometry (ICP-MS) of the liver and kidneys showed that extrapulmonary translocation was below the limits of detection.
View Article and Find Full Text PDFACS Cent Sci
January 2025
Centre for Inflammation Research, The University of Edinburgh, EH16 4UU Edinburgh, U.K.
The cellular uptake routes of peptides and proteins are complex and diverse, often handicapping therapeutic success. Understanding their mechanisms of internalization requires chemical derivatization with approaches that are compatible with wash-free and real-time imaging. In this work, we developed a new late-stage labeling strategy for unprotected peptides and proteins, which retains their biological activity while enabling live-cell imaging of uptake and intracellular trafficking.
View Article and Find Full Text PDFInt J Med Microbiol
January 2025
Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan.
Cardiovascular diseases, primarily caused by atherosclerosis, are a major public health concern worldwide. Atherosclerosis is characterized by chronic inflammation and lipid accumulation in the arterial wall, leading to plaque formation. In this process, macrophages play a crucial role by ingesting lipids and transforming into foam cells, which contribute to plaque instability and cardiovascular events.
View Article and Find Full Text PDFBiomolecules
January 2025
Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan.
Synthetic cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) are promising candidates for vaccine adjuvants, because they activate immune responses through the Toll-like receptor 9 (TLR9) pathway. However, unmodified CpG ODNs are quickly degraded by serum nucleases, and their negative charge hinders cellular uptake, limiting their clinical application. Our group previously reported that guanine-quadruplex (G4)-forming CpG ODNs exhibit enhanced stability and cellular uptake.
View Article and Find Full Text PDFBiomedicines
January 2025
Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
: Macrophages play a pivotal role in various pathogenic processes, necessitating the development of efficient differentiation techniques to meet the high demand for these cells in research and therapy. Human macrophages can be obtained via culturing peripheral blood monocytes; however, this source has limited yields and requires patient contact for each proposed use. In addition, it would be difficult to perform gene editing on peripheral blood monocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!