It is typically challenging for visual or visual-inertial odometry systems to handle the problems of dynamic scenes and pure rotation. In this work, we design a novel visual-inertial odometry (VIO) system called RD-VIO to handle both of these two problems. First, we propose an IMU-PARSAC algorithm which can robustly detect and match keypoints in a two-stage process. In the first state, landmarks are matched with new keypoints using visual and IMU measurements. We collect statistical information from the matching and then guide the intra-keypoint matching in the second stage. Second, to handle the problem of pure rotation, we detect the motion type and adapt the deferred-triangulation technique during the data-association process. We make the pure-rotational frames into the special subframes. When solving the visual-inertial bundle adjustment, they provide additional constraints to the pure-rotational motion. We evaluate the proposed VIO system on public datasets and online comparison. Experiments show the proposed RD-VIO has obvious advantages over other methods in dynamic environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TVCG.2024.3353263 | DOI Listing |
Sensors (Basel)
December 2024
SOTI Aerospace, SOTI Inc., Mississauga, ON L5N 8L9, Canada.
Indoor navigation is becoming increasingly essential for multiple applications. It is complex and challenging due to dynamic scenes, limited space, and, more importantly, the unavailability of global navigation satellite system (GNSS) signals. Recently, new sensors have emerged, namely event cameras, which show great potential for indoor navigation due to their high dynamic range and low latency.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Institute of Computer Science, Zurich University of Applied Sciences, 8400 Winterthur, Switzerland.
Simultaneous localization and mapping (SLAM) techniques can be used to navigate the visually impaired, but the development of robust SLAM solutions for crowded spaces is limited by the lack of realistic datasets. To address this, we introduce InCrowd-VI, a novel visual-inertial dataset specifically designed for human navigation in indoor pedestrian-rich environments. Recorded using Meta Aria Project glasses, it captures realistic scenarios without environmental control.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Electrical Engineering, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
In today's technologically advanced landscape, precision in navigation and positioning holds paramount importance across various applications, from robotics to autonomous vehicles. A common predicament in location-based systems is the reliance on Global Positioning System (GPS) signals, which may exhibit diminished accuracy and reliability under certain conditions. Moreover, when integrated with the Inertial Navigation System (INS), the GPS/INS system could not provide a long-term solution for outage problems due to its accumulated errors.
View Article and Find Full Text PDFEvent-based cameras offer unique advantages over traditional cameras, such as high dynamic range, absence of motion blur, and microsecond-level latency. This paper introduces an innovative approach to visual odometry, to our knowledge, by integrating the newly proposed Rotated Binary DART (RBD) descriptor within a Visual-Inertial Navigation System (VINS)-based event visual odometry framework. Our method leverages event optical flow and RBD for precise feature selection and matching, ensuring robust performance in dynamic environments.
View Article and Find Full Text PDFSensors (Basel)
November 2024
School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 611731, China.
Composite robots often encounter difficulties due to changes in illumination, external disturbances, reflective surface effects, and cumulative errors. These challenges significantly hinder their capabilities in environmental perception and the accuracy and reliability of pose estimation. We propose a nonlinear optimization approach to overcome these issues to develop an integrated localization and navigation framework, IIVL-LM (IMU, Infrared, Vision, and LiDAR Fusion for Localization and Mapping).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!