Cell fate transition involves dynamic changes of gene regulatory network and chromatin landscape, requiring multiple levels of regulation, yet the cross-talk between epitranscriptomic modification and chromatin signaling remains largely unknown. Here, we uncover that suppression of -acetyltransferase 10 (NAT10), the writer for mRNA -acetylcytidine (acC) modification, can notably affect human embryonic stem cell (hESC) lineage differentiation and pluripotent reprogramming. With integrative analysis, we identify that NAT10-mediated acC modification regulates the protein levels of a subset of its targets, which are strongly enriched for fate-instructive chromatin regulators, and among them, histone chaperone ANP32B is experimentally verified and functionally relevant. Furthermore, NAT10-acC-ANP32B axis can modulate the chromatin landscape of their downstream genes (e.g., key regulators of Wnt and TGFβ pathways). Collectively, we show that NAT10 is an essential regulator of cellular plasticity, and its catalyzed mRNA cytidine acetylation represents a critical layer of epitranscriptomic modulation and uncover a previously unrecognized, direct cross-talk between epitranscriptomic modification and chromatin signaling during cell fate transitions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10786415 | PMC |
http://dx.doi.org/10.1126/sciadv.adh9871 | DOI Listing |
Nat Commun
December 2024
National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
Although epigenetic modification has long been recognized as a vital force influencing gene regulation in plants, the dynamics of chromatin structure implicated in the intertwined transcriptional regulation of duplicated genes in polyploids have yet to be understood. Here, we document the dynamic organization of chromatin structure in two subgenomes of allotetraploid cotton (Gossypium hirsutum) by generating 3D genomic, epigenomic and transcriptomic datasets from 12 major tissues/developmental stages covering the life cycle. We systematically identify a subset of genes that are closely associated with specific tissue functions.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Clinical Pathobiology and Immunological Testing, School of Medical Laboratory, Qilu Medical University, Zibo 255300, China.
Mouse embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) are pluripotent stem cells derived from pre-implantation and post-implantation embryos, respectively. These cells are capable of interconversion through manipulation of key transcription factors and signaling pathways. While BAF chromatin remodeling complexes are known to play crucial roles in ESC self-renewal and pluripotency, their roles in EpiSCs and their interconversion with ESCs remain unclear.
View Article and Find Full Text PDFCurr Issues Mol Biol
December 2024
Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
-rearranged Renal Cell Carcinoma (TFE3-RCC) is an aggressive subtype of RCC characterized by Xp11.2 rearrangement, leading to TFE3 fusion proteins with oncogenic potential. Despite advances in understanding its molecular biology, effective therapies for advanced cases remain elusive.
View Article and Find Full Text PDFJ Exp Bot
December 2024
Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.
In aerobic life forms, reactive oxygen species (ROS) are produced by the partial reduction of oxygen during energy-generating metabolic processes. In plants, ROS production increases during periods of both abiotic and biotic stress, severely overloading the antioxidant systems. Hydrogen peroxide (H2O2) plays a central role in cellular redox homeostasis and signaling by oxidising crucial cysteines to sulfenic acid, which is considered a biologically relevant post-translational modification (PTM).
View Article and Find Full Text PDFCell Mol Life Sci
December 2024
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
Understanding how embryonic progenitors decode extrinsic signals and transform into lineage-specific regulatory networks to drive cell fate specification is a fundamental, yet challenging question. Here, we develop a new model of surface epithelium (SE) differentiation induced by human embryonic stem cells (hESCs) using retinoic acid (RA), and identify BMP4 as an essential downstream signal in this process. We show that the retinoid X receptors, RXRA and RXRB, orchestrate SE commitment by shaping lineage-specific epigenetic and transcriptomic landscapes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!