-acetyltransferase NAT10 controls cell fates via connecting mRNA cytidine acetylation to chromatin signaling.

Sci Adv

Life Sciences Institute, The Second Affiliated Hospital and School of Medicine, The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China.

Published: January 2024

Cell fate transition involves dynamic changes of gene regulatory network and chromatin landscape, requiring multiple levels of regulation, yet the cross-talk between epitranscriptomic modification and chromatin signaling remains largely unknown. Here, we uncover that suppression of -acetyltransferase 10 (NAT10), the writer for mRNA -acetylcytidine (acC) modification, can notably affect human embryonic stem cell (hESC) lineage differentiation and pluripotent reprogramming. With integrative analysis, we identify that NAT10-mediated acC modification regulates the protein levels of a subset of its targets, which are strongly enriched for fate-instructive chromatin regulators, and among them, histone chaperone ANP32B is experimentally verified and functionally relevant. Furthermore, NAT10-acC-ANP32B axis can modulate the chromatin landscape of their downstream genes (e.g., key regulators of Wnt and TGFβ pathways). Collectively, we show that NAT10 is an essential regulator of cellular plasticity, and its catalyzed mRNA cytidine acetylation represents a critical layer of epitranscriptomic modulation and uncover a previously unrecognized, direct cross-talk between epitranscriptomic modification and chromatin signaling during cell fate transitions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10786415PMC
http://dx.doi.org/10.1126/sciadv.adh9871DOI Listing

Publication Analysis

Top Keywords

chromatin signaling
12
-acetyltransferase nat10
8
mrna cytidine
8
cytidine acetylation
8
signaling cell
8
cell fate
8
chromatin landscape
8
cross-talk epitranscriptomic
8
epitranscriptomic modification
8
modification chromatin
8

Similar Publications

Although epigenetic modification has long been recognized as a vital force influencing gene regulation in plants, the dynamics of chromatin structure implicated in the intertwined transcriptional regulation of duplicated genes in polyploids have yet to be understood. Here, we document the dynamic organization of chromatin structure in two subgenomes of allotetraploid cotton (Gossypium hirsutum) by generating 3D genomic, epigenomic and transcriptomic datasets from 12 major tissues/developmental stages covering the life cycle. We systematically identify a subset of genes that are closely associated with specific tissue functions.

View Article and Find Full Text PDF

Interplay of Chromatin Remodeling BAF Complexes in Mouse Embryonic and Epiblast Stem Cell Conversion and Maintenance.

J Biol Chem

December 2024

Department of Clinical Pathobiology and Immunological Testing, School of Medical Laboratory, Qilu Medical University, Zibo 255300, China.

Mouse embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) are pluripotent stem cells derived from pre-implantation and post-implantation embryos, respectively. These cells are capable of interconversion through manipulation of key transcription factors and signaling pathways. While BAF chromatin remodeling complexes are known to play crucial roles in ESC self-renewal and pluripotency, their roles in EpiSCs and their interconversion with ESCs remain unclear.

View Article and Find Full Text PDF

-rearranged Renal Cell Carcinoma (TFE3-RCC) is an aggressive subtype of RCC characterized by Xp11.2 rearrangement, leading to TFE3 fusion proteins with oncogenic potential. Despite advances in understanding its molecular biology, effective therapies for advanced cases remain elusive.

View Article and Find Full Text PDF

In aerobic life forms, reactive oxygen species (ROS) are produced by the partial reduction of oxygen during energy-generating metabolic processes. In plants, ROS production increases during periods of both abiotic and biotic stress, severely overloading the antioxidant systems. Hydrogen peroxide (H2O2) plays a central role in cellular redox homeostasis and signaling by oxidising crucial cysteines to sulfenic acid, which is considered a biologically relevant post-translational modification (PTM).

View Article and Find Full Text PDF

Retinoic acid drives surface epithelium fate determination through the TCF7-MSX2 axis.

Cell Mol Life Sci

December 2024

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.

Understanding how embryonic progenitors decode extrinsic signals and transform into lineage-specific regulatory networks to drive cell fate specification is a fundamental, yet challenging question. Here, we develop a new model of surface epithelium (SE) differentiation induced by human embryonic stem cells (hESCs) using retinoic acid (RA), and identify BMP4 as an essential downstream signal in this process. We show that the retinoid X receptors, RXRA and RXRB, orchestrate SE commitment by shaping lineage-specific epigenetic and transcriptomic landscapes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!