Bioplastics such as polyhydroxyalkanoates (PHA) emerge as an interesting alternative to conventional fossil fuel-based plastics and as part of the solution their associated environmental issues. Nevertheless, end-of-life scenarios are still a major concern, especially within a circular economy framework. When feasible, mechanical recycling appears as the best alternative, since it saves raw materials and energy. However, the viability of mechanical recycling can be compromised by the degradation of the plastic during its use and during the recycling process and by the presence of certain additives. Consequently, the main objective of this work is to study the effect of accelerated ageing and mechanical recycling on the structure and properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)-based formulations. The obtained results suggest that accelerated ageing and mechanical recycling led only to a slight degradation of the pure PHBV material, along with small variations in the thermal and mechanical properties. However, the plasticized PHBV formulations showed a more severe degradation and increased thermal stability and stiffness, which could be result of the elimination of the plasticizer during the recycling. Overall, mechanical recycling seems to be an interesting valorization strategy for PHBV wastes, although especial attention should be paid to the additives present in the materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-31758-0 | DOI Listing |
Waste Manag Res
January 2025
Bohai Rim Energy Research Institute, Northeast Petroleum University, Daqing, Heilongjiang, China.
In this systematic review, advancements in plastic recycling technologies, including mechanical, thermolysis, chemical and biological methods, are examined. Comparisons among recycling technologies have identified current research trends, including a focus on pretreatment technologies for waste materials and the development of new organic chemistry or biological techniques that enable recycling with minimal energy consumption. Existing environmental and economic studies are also compared.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Colorado State University, Chemistry and Biochemistry, 301 W. Pitkin Street, 215 UCB, 80523, United States, 80523, Fort Collins, UNITED STATES OF AMERICA.
Synthetic polymers have found widespread use with functional lifetimes from seconds to decades. However, the lack of end-of-life treatment for these plastics is causing a significant environmental and human health crisis due to their persistence and bioaccumulation. Upcycling post-consumer plastic waste to products with inherent recyclability is an attractive strategy to tackle this problem, as it can broaden the range of accessible materials and uncover unprecedented features while dealing with current plastic waste.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States.
The sustainable management of polydiene waste represents a formidable challenge in the realm of polymer chemistry, given the extensive industrial utilization of polydienes due to their superior elastomeric properties. This comprehensive Perspective addresses the multifaceted obstacles hindering efficient recycling of polydienes, encompassing environmental concerns, technical limitations, and economic disincentives. We systematically dissect the influence of polydienes' chemical structures on their recyclability, tracing the evolution of polydiene utilization and disposal practices while assessing the current landscape of waste management strategies.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Institute of Science, Nevşehir Hacı Bektaş Veli University, Nevşehir, Türkiye.
Managing basalt rock cutting waste in an environmentally responsible manner is crucial to mitigate its negative impacts and protect both the environment and human health. Recycling basalt rock cutting waste in geopolymer applications offers multiple environmental, economic, and performance benefits, making it a promising approach for sustainable construction practices. For this purpose, this study concerns about the performance of fiber-reinforced basalt rock-cutting waste-based geopolymer composites at high temperatures up to 1000 °C.
View Article and Find Full Text PDFChemosphere
January 2025
Environment Research Institute, Shandong University, Qingdao, 266237, PR China.
Polyethylene terephthalate (PET) waste significantly contributes to the global plastic crisis, but enzymatic conversion has become an efficient and environmentally friendly strategy to combat it. Therefore, this study explored the Re-face selective depolymerization mechanisms of a novel PET-degradation peptidase, hydrolase 202. Theoretical calculations revealed that the first step, a catalytic triad-assisted nucleophilic attack, is the rate-determining step.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!