N-methyl-D-aspartate receptors (NMDARs) play a critical role in normal brain function, and variants in genes encoding NMDAR subunits have been described in individuals with various neuropsychiatric disorders. We have used whole-cell patch-clamp electrophysiology, fluorescence microscopy and in-silico modeling to explore the functional consequences of disease-associated nonsense and frame-shift variants resulting in the truncation of GluN2A or GluN2B C-terminal domain (CTD). This study characterizes variant NMDARs and shows their reduced surface expression and synaptic localization, altered agonist affinity, increased desensitization, and reduced probability of channel opening. We also show that naturally occurring and synthetic steroids pregnenolone sulfate and epipregnanolone butanoic acid, respectively, enhance NMDAR function in a way that is dependent on the length of the truncated CTD and, further, is steroid-specific, GluN2A/B subunit-specific, and GluN1 splice variant-specific. Adding to the previously described effects of disease-associated NMDAR variants on the receptor biogenesis and function, our results improve the understanding of the molecular consequences of NMDAR CTD truncations and provide an opportunity for the development of new therapeutic neurosteroid-based ligands.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10786987PMC
http://dx.doi.org/10.1007/s00018-023-05062-6DOI Listing

Publication Analysis

Top Keywords

disease-associated nonsense
8
nonsense frame-shift
8
frame-shift variants
8
variants truncation
8
truncation glun2a
8
glun2a glun2b
8
glun2b c-terminal
8
c-terminal domain
8
surface expression
8
nmdar
5

Similar Publications

Loss-of-function mutations in the human gene encoding the neuron-specific Ca channel Ca2.1 are linked to the neurological disease episodic ataxia type 2 (EA2), as well as neurodevelopmental disorders such as developmental delay and developmental epileptic encephalopathy. Disease-associated Ca2.

View Article and Find Full Text PDF

Epileptic encephalopathies are severe epilepsy syndromes characterized by early onset and progressive cerebral dysfunction. A nonsense variant in the DALR anticodon binding domain containing 3 (DALRD3) gene has been implicated in epileptic encephalopathy, but no other disease-associated variants in DALRD3 have been described. In human cells, the DALRD3 protein forms a complex with the METTL2 methyltransferase to generate the 3-methylcytosine (m3C) modification in specific arginine tRNAs.

View Article and Find Full Text PDF
Article Synopsis
  • - Cohen syndrome is a rare genetic disorder characterized by intellectual disability, neutropenia (low white blood cell count), and recurrent infections, primarily caused by mutations in the VPS13B gene.
  • - The study analyzed three cases of Cohen syndrome diagnosed through genetic testing, highlighting varying symptoms based on age, but noting similarities in symptoms like hypotonia, swallowing difficulties, and developmental delays.
  • - Early recognition of symptoms such as recurrent infections and hypotonia is crucial for timely diagnosis and genetic counseling in patients suspected to have Cohen syndrome.
View Article and Find Full Text PDF

Despite the extensive genetic heterogeneity of Hirschsprung disease (HSCR; congenital colonic aganglionosis) 72% of patients harbor pathogenic variants in 10 genes that form a gene regulatory network (GRN) controlling the development of the enteric nervous system (ENS). Among these genes, the receptor tyrosine kinase gene RET is the most significant contributor, accounting for pathogenic variants in 12%-50% of patients depending on phenotype. RET plays a critical role in the proliferation and migration of ENS precursors, and defects in these processes lead to HSCR.

View Article and Find Full Text PDF

Mutations in PRPH2 are a relatively common cause of sight-robbing inherited retinal degenerations (IRDs). Peripherin-2 (PRPH2) is a photoreceptor-specific tetraspanin protein that structures the disk rim membranes of rod and cone outer segment (OS) organelles, and is required for OS morphogenesis. PRPH2 is noteworthy for its broad spectrum of disease phenotypes; both inter- and intra-familial heterogeneity have been widely observed and this variability in disease expression and penetrance confounds efforts to understand genotype-phenotype correlations and pathophysiology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!