A hybrid energy harvester based on magnetic levitation is inspired by the structure of the flapping wing, which consists of two parts: one is a flapping wing structure mounted with a piezoelectric sheet, which can achieve piezoelectric energy harvesting; the other is an intermediate muscle unit, which is vertically arranged by three groups of permanent magnets to achieve magnetic levitation electromagnetic energy harvesting. An electromechanical-electromagnetic coupling model of this harvester is established based on electromechanical coupling characteristics. The simulation analysis can evaluate the magnetic field distribution and nonlinear magnetic properties and also analyze its effects on the output performance. Several experiments are designed to verify the effectiveness of the hybrid energy harvesting structure and to check the influence of the number of magnets on the output power. The maximum output power of the proposed structure can generate 13.61 mW at 4.5 Hz excitation.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0178117DOI Listing

Publication Analysis

Top Keywords

hybrid energy
12
flapping wing
12
magnetic levitation
12
energy harvesting
12
energy harvester
8
wing structure
8
based magnetic
8
output power
8
structure
5
magnetic
5

Similar Publications

With rapid, energy-intensive, and coal-fueled economic growth, global air quality is deteriorating, and particulate matter pollution has emerged as one of the major public health problems worldwide. It is extremely urgent to achieve carbon emission reduction and air pollution prevention and control, aiming at the common problem of weak and unstable signals of characteristic elements in the application of laser-induced breakdown spectroscopy (LIBS) technology for trace element detection. In this study, the influence of the optical fiber collimation signal enhancement method on the LIBS signal was explored.

View Article and Find Full Text PDF

Atomically precise clusters such as [Pt(CO)(PPh)] ( = 1,2) (PPh is triphenylphosphine) are known as precursors for making oxidation catalysts. However, the changes occurring to the cluster upon thermal activation during the formation of the active catalyst are poorly understood. We have used a combination of hybrid mass spectrometry and surface science to map the thermal decomposition of [Pt(CO)(PPh)](NO).

View Article and Find Full Text PDF

The energy-exergy and environ-economic (4E) analysis was conducted on a solar still with and without a hybrid thermal energy storage system (TESS) and a solar air heater. The proposed solar still was modified by integrating a rectangular aluminium box filled with paraffin wax and black gravel as the TESS and coupled with a solar air heater. Paraffin wax was selected due to its widespread availability and proven effectiveness in accelerating desalination, improving process uniformity, and maintaining optimal temperature levels.

View Article and Find Full Text PDF

Accurate QM/MM Molecular Dynamics for Periodic Systems in GPU4PySCF with Applications to Enzyme Catalysis.

J Chem Theory Comput

January 2025

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.

We present an implementation of the quantum mechanics/molecular mechanics (QM/MM) method for periodic systems using GPU accelerated QM methods, a distributed multipole formulation of the electrostatics, and a pseudobond treatment of the QM/MM boundary. We demonstrate that our method has well-controlled errors, stable self-consistent QM convergence, and energy-conserving dynamics. We further describe an application to the catalytic kinetics of chorismate mutase.

View Article and Find Full Text PDF

Reliable computational methodologies and basis sets for modeling x-ray spectra are essential for extracting and interpreting electronic and structural information from experimental x-ray spectra. In particular, the trade-off between numerical accuracy and computational cost due to the size of the basis set is a major challenge, since molecular orbitals undergo extreme relaxation in the core-hole state. To gain clarity on the changes in electronic structure induced by the formation of a core-hole, the use of sufficiently flexible basis for expanding the orbitals, particularly for the core region, has been shown to be essential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!