Nucleophile-Controlled Trapping of Gold Carbene by Nitriles and Water: Synthesis of 5-Pyrimido[5,4-]indoles and 2-Benzylidene-3-indolinones.

Org Lett

State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

Published: January 2024

A gold-catalyzed, nucleophile-controlled cascade reaction of -(2-azidophenyl-ynyl)methanesulfonamides with nitriles and water is described that provides structurally diverse 5-pyrimido[5,4-]indoles and 2-benzylidene-3-indolinones in good to excellent yields. Mechanistic studies indicate that the β-sulfonamido-α-imino gold carbene is the key intermediate which is generated through the gold-catalyzed cyclization of -(2-azidophenyl-ynyl)methanesulfonamides and undergoes formal [4 + 2] cascade annulation with nitriles and intramolecular S2' type reaction with water, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.3c03856DOI Listing

Publication Analysis

Top Keywords

gold carbene
8
nitriles water
8
5-pyrimido[54-]indoles 2-benzylidene-3-indolinones
8
nucleophile-controlled trapping
4
trapping gold
4
carbene nitriles
4
water synthesis
4
synthesis 5-pyrimido[54-]indoles
4
2-benzylidene-3-indolinones gold-catalyzed
4
gold-catalyzed nucleophile-controlled
4

Similar Publications

Carbene-metal-amide (CMA) complexes have diverse applications in luminescence, imaging and sensing. In this study, we designed and synthesized a series of CMA complexes, which were subsequently doped into a PMMA host. These materials demonstrate light-induced dynamic phosphorescence, attributed to their long intrinsic triplet state lifetime (τP,int, in the μs-ms scale), high intersystem crossing (ISC) rate constant (kISC, up to 107 s-1), and bright phosphorescence.

View Article and Find Full Text PDF

Antibacterial and Anti-Influenza Activities of -Heterocyclic Carbene-Gold Complexes.

Pharmaceuticals (Basel)

December 2024

Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, Blocco 11, Coppito, 67010 L'Aquila, Italy.

Background/objectives: Infectious diseases represent a serious threat due to rising antimicrobial resistance, particularly among multidrug-resistant bacteria and influenza viruses. Metal-based complexes, such as -heterocyclic carbene-gold (NHC-gold) complexes, show promising therapeutic potential due to their ability to inhibit various pathogens.

Methods: Eight NHC-gold complexes were synthesized and tested for antibacterial activity against , , and for anti-influenza activity in lung and bronchial epithelial cells infected with influenza virus A/H1N1.

View Article and Find Full Text PDF
Article Synopsis
  • New quinizarin-Au(I)-NHC complexes were developed and fully characterized, demonstrating effective growth inhibition in HeLa cervical cancer cells with IC values between 2.4 and 5.3 μM.
  • Cytotoxicity studies showed that complex 2 b could overcome anthracycline resistance in K562 leukemia cells and worked synergistically with doxorubicin against both sensitive and resistant leukemia cells.
  • The study highlighted that localizing these complexes to mitochondria was crucial for their antiproliferative effects and ability to counteract drug resistance, rather than just overall cytotoxicity.
View Article and Find Full Text PDF

NHC-Au-xanthate complexes.

Chem Commun (Camb)

January 2025

Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Kasprzaka 44/52, Poland.

We report the synthesis, isolation, and comprehensive characterization of N-heterocyclic carbene gold xanthate (NHC-Au-X, X - xanthate) complexes. These easily accessible complexes demonstrate significant versatility as photocatalysts, facilitating [2+2]-cycloadditions, and as π-catalysts in the intramolecular hydroxylation of allenes and hydrohydrazination of alkynes.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on blue-emitting gold(I)-NHC chloride complexes with varying alkyl chains, revealing their unique molecular interactions and solid-state characteristics.
  • These complexes demonstrate strong thermal stability and significant blue photoluminescence, with the n-butyl complex (1) showing the highest quantum yield at 22.44%.
  • Computational analyses help clarify the electronic structure and luminescence properties, highlighting the potential applications for these complexes in blue light-emitting devices like LEDs.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!