Endoplasmic reticulum (ER) stress is closely associated with cell apoptosis, autophagy, DNA damage, metabolism, and migration. When ER stress occurs, a large number of reactive oxygen species, including hypobromous acid (HOBr), are generated. The degree of ER stress can be understood by accurately detecting the HOBr concentration in the ER. Unfortunately, no ER-targetable probes for detecting HOBr have been reported to date. To solve this problem, we developed a naphthalimide-based fluorescent probe (ER-NABr) for imaging HOBr in the ER. Upon reaction with HOBr, a red shift in the fluorescence spectrum occurs due to the difference in the molecular conjugation between the original ER-NABr and the reaction product. ER-NABr showed a fast response (within 30 s) and high selectivity towards HOBr, with a ratiometric quantitative response (5-40 μM) and high sensitivity (138 nM). With its excellent biocompatibility and remarkable ER-targetable ability, ER-NABr was successfully utilized to ratiometrically image intracellular HOBr, particularly during ER stress, which is beneficial for revealing the role of HOBr in ER-associated diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3tb02679e | DOI Listing |
Free Radic Biol Med
January 2025
Mātai Hāora, Centre for Redox Biology and Medicine, University of Otago Christchurch, Christchurch, New Zealand. Electronic address:
Cutaneous melanoma is a highly invasive, heterogeneous and treatment resistant cancer. It's ability to dynamically shift between transcriptional states or phenotypes results in an adaptive cell plasticity that may drive cancer cell invasion or the development of therapy resistance. The expression of peroxidasin (PXDN), an extracellular matrix peroxidase, has been proposed to be associated with the invasive metastatic melanoma phenotype.
View Article and Find Full Text PDFWater Res
December 2024
Department of Civil Engineering, University of Hong Kong, Pokfulam, Hong Kong, PR China.
The kinetics of polyamide membrane degradation by free chlorine and halide ions (Br and Cl) were innovatively evaluated based on physicochemical properties and filtration performance, using water/solute permeability coefficient in addition to bromide incorporation as important indicators. The reaction rate constants for the reduced water and HBO permeability coefficient were 1-2 orders of magnitude higher at 0-1 h than 1-10 h. N-bromination and bromination-promoted hydrolysis are dominant degradation mechanisms at 0-1 h (reflected by the breakage of hydrogen bond, the increased Ca binding content, and the increased charge density), and ring-bromination further occurs at 1-10 h (reflected by the disappearance or weakening of aromatic amide band and the nearly constant hydrogen bond).
View Article and Find Full Text PDFWater Res
February 2025
Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland; School of Architecture, Civil, and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland. Electronic address:
Sci Adv
December 2024
Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China.
The [Fe]/HO oxidation system has found wide applications in chemistry and biology. Halogenation with this [Fe]/HO oxidation protocol and halide (X) in the biological system is well established with the identification of heme-iron-dependent haloperoxidases. However, mimicking such halogenation process is rarely explored for practical use in organic synthesis.
View Article and Find Full Text PDFChemosphere
November 2024
Korea Polar Research Institute (KOPRI), Incheon, 21990, Republic of Korea; Department of Polar Science, University of Science of Technology (UST), Incheon, 21990, Republic of Korea. Electronic address:
The purification of bromate (BrO)-contaminated water has become a challenge because of its persistence and adverse effects. Furthermore, there has been concern over the release of byproducts, such as diphenyl phosphate (DPHP), from flame retardants in wastewater treatment plant (WWTP). In this study, we designed the water treatment system for the oxidation of DPHP accompanied by bromate (BrO) reduction via freezing the solution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!