All-polymer solar cells have garnered particular attention thanks to their superior thermal, photo, and mechanical stabilities for large-scale manufacturing, yet the performance enhancement remains largely restrained by inherent morphological challenges of the bulk-heterojunction active layer. Herein, a 3D Y-branched polymerized small-molecule acceptor named PYBF, characteristic of high molecular weight and glass transition temperature, is designed and synthesized by precisely linking C-symmetric benzotrifuran with Y6 acceptors. In comparison to the benchmark thiophene-bridged linear PYIT acceptor, an optical blue-shift absorption is observed for PYBF yet a slightly higher power conversion efficiency (PCE) of 15.7% (vs 15.14%) is obtained when paired with polymer donor PM6, which benefit from the more crystalline and face-on-oriented PYBF domains. However, the star-like bulky structure of PYBF results in the nucleation-growth dominant phase-separation in polymeric blends, which generates stumpy droplet-like acceptor fibrils and impairs the continuity of acceptor phases. This issue is however surprisingly resolved by incorporating a small amount of PYIT, which leads to the formation of the more interconnective neuron-like dual-acceptor domains by long-chain entanglements of linear acceptors and alleviates bimolecular recombination. Thus, the champion device realizes a respectable PCE of up to ≈17% and importantly exhibits thermal and storage stabilities superior to the linear counterpart.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202313237 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Guangzhou University, Center for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006 P, 510006, Guangzhou, CHINA.
The optimization of morphology in all-polymer solar cells (all-PSCs) often relies on the use of solvent additives. However, their tendency to remain trapped in the device due to high boiling points leads to performance degradation over time. In this study, we introduce a novel approach involving the design and synthesis of one dual-asymmetric solid additive featuring mono-brominated-asymmetric dithienothiophene (SL-1).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China.
Thanks to the development of non-fullerene acceptor (NFA) materials, the photovoltaic conversion efficiency (PCE) of organic solar cells (OSCs) has exceeded 20 %, which has met the requirements for commercialisation. In the current stage, the main focus is to balance the performance and stability. It has been shown that all-polymer formulation can improve device stability, however, PCE is not in satifsfaction, and the batch-to-batch variation leads to quality control issues.
View Article and Find Full Text PDFMacromol Rapid Commun
December 2024
Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
In order to realize high-performance bulk-heterojunction (BHJ) all-polymer solar cells, achieving appropriate aggregation and moderate miscibility of the polymer blends is one critical factor. Herein, this study designs and synthesizes two new polymer acceptors (Ps), namely PYF and PYF-Cl, containing benzo[1,2-b:4,5-b'] difuran (BDF) moiety with/without chlorine atoms on the thiophene side groups. Thanks to the preferred planar structure and high electronegativity of the BDF units, the resultant Ps generate strong intermolecular interactions and π-π stacking in both the neat and blend films.
View Article and Find Full Text PDFNatl Sci Rev
December 2024
Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Photonic Research Institute (PRI), The Hong Kong Polytechnic University, Hong Kong 999077, China.
Adv Mater
December 2024
College of Chemistry and Chemical Engineering/ Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.
All-polymer organic solar cells (OSCs) have shown unparalleled application potential in the field of flexible wearable electronics in recent years due to the excellent mechanical and photovoltaic properties. However, the small molecule acceptors after polymerization in still retain some mechanical and aggregation properties of the small molecule, falling short of the ductility requirements for flexible devices. Here, based on the multimodal energy dissipation theory, the mechanical and photovoltaic properties of flexible devices are co-enhanced by adding the thermoplastic elastomer material (polyurethane, PU) to the PM6:PBQx-TF:PY-IT-based active layer films.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!