The wetting behavior of silver at the nanoscale on a textured diamond substrate is not absolutely roughness-dependent in printing diamond chips, tough bioimplant coating, and joining for cutting tool industries. This study uses a molecular dynamics simulation to capture the stochastic wetting behavior toward precision for given geometries. It is deduced that the metalophilic character of molten silver is increased with an increase in roughness on sinusoidal contoured diamond substrates rather than orthogonal pillars of the same roughness until an equilibration time of 210 ps at a temperature of 950 K. Increasing the roughness after the equilibrium time causes a supermetalophilic angle of 13° for the sinusoid at 500 ps, and the orthogonal design causes the Wenzel state. Therefore, wetting states are metastable and ultimately depend upon the wetting time and geometry rather than the roughness only. A high joining strength creates a long-lasting coating, owing to the high surface energy of the textured surface. This study presents effective thin seam development in the least possible time of 230 ps and silver consumption at the nanoscale for supermetalophilic and metalophobic coatings in electronic packaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c14948 | DOI Listing |
Cell
January 2025
Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA. Electronic address:
Xist RNA initiates X inactivation as it spreads in cis across the chromosome. Here, we reveal a biophysical basis for its cis-limited diffusion. Xist RNA and HNRNPK together drive a liquid-liquid phase separation (LLPS) that encapsulates the chromosome.
View Article and Find Full Text PDFACS Nano
January 2025
International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China.
Precise patterning of sensing materials, particularly the long-range-ordered assembly of micro/nanostructures, is pivotal for improving sensor performance, facilitating miniaturization, and enabling seamless integration. This paper examines the importance of interfacial confined assembly in sensor patterning, including gas-liquid and liquid-liquid confined assembly, wettability-assisted or microstructure-assisted solid-liquid interfacial confined assembly, and tip-induced confined assembly. The application of capillary bridge confined assembly technology in chemical sensors, flexible electronics, and optoelectronics is highlighted.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
The development of viscous-crude oil and water separation technology is important for overcoming pollution caused by oil spills. Although some separators responding to light, electric, and temperature have been proposed, their poor structural homogeneity and inferior controllability, together with weak capillary forces, hinder the rapid salvage of viscous crude oil. Herein, a Joule-heated hydrophobic porous oil/water separator is reported, which has advantages of low energy consumption (169.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Civil, Environmental, and Mining Engineering, University of Western Australia, Perth, Western Australia, Australia.
Understanding and predicting plant water dynamics during and after water stress is increasingly important but challenging because the high-dimensional nature of the soil-plant-atmosphere system makes it difficult to identify mechanisms and constrain behaviour. Datasets that capture hydrological, physiological and meteorological variation during changing water availability are relatively rare but offer a potentially valuable resource to constrain plant water dynamics. This study reports on a drydown and re-wetting experiment of potted Populus trichocarpa, which intensively characterised plant water fluxes, water status and water sources.
View Article and Find Full Text PDFSoft Matter
January 2025
Center of Excellence in Energy Conversion (CEEC), Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
Recent progress in digital microfluidics has revealed the distinct advantages of liquid marbles, such as minimal surface friction, reduced evaporation rates, and non-wettability compared to uncoated droplets. This study provides a comprehensive examination of an innovative technique for the precise, contamination-free manipulation of non-magnetic water liquid marbles (WLMs) carried by a ferrofluid liquid marble (FLM) under the control of direct current (DC) and pulse-width modulation (PWM) magnetic fields. The concept relies on the phenomenon in which an FLM and WLMs form a shared meniscus when placed together on a water surface, causing the WLMs to closely track the magnetically actuated FLM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!