Microstructural alterations in the locus coeruleus-entorhinal cortex pathway in Alzheimer's disease and frontotemporal dementia.

Alzheimers Dement (Amst)

Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE) IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli Brescia Italy.

Published: January 2024

AI Article Synopsis

  • Scientists studied a brain connection called LC-TEC in people with Alzheimer's disease (AD) and a type of dementia called frontotemporal dementia (bvFTD).
  • They used special MRI scans to look at the brain's structure and found that people with bvFTD had more serious changes in this pathway compared to those with AD and healthy people.
  • The results suggest that the changes in the LC-TEC pathway are linked to the loss of thickness in another brain area called the entorhinal cortex, especially in bvFTD patients.

Article Abstract

Introduction: We investigated in vivo the microstructural integrity of the pathway connecting the locus coeruleus to the transentorhinal cortex (LC-TEC) in patients with Alzheimer's disease (AD) and frontotemporal dementia (FTD).

Methods: Diffusion-weighted MRI scans were collected for 21 AD, 20 behavioral variants of FTD (bvFTD), and 20 controls. Fractional anisotropy (FA), mean, axial, and radial diffusivities (MD, AxD, RD) were computed in the LC-TEC pathway using a normative atlas. Atrophy was assessed using cortical thickness and correlated with microstructural measures.

Results: We found (i) higher RD in AD than controls; (ii) higher MD, RD, and AxD, and lower FA in bvFTD than controls and AD; and (iii) a negative association between LC-TEC MD, RD, and AxD, and entorhinal cortex (EC) thickness in bvFTD (all  < 0.050).

Discussion: LC-TEC microstructural alterations are more pronounced in bvFTD than AD, possibly reflecting neurodegeneration secondary to EC atrophy.

Highlights: Microstructural integrity of LC-TEC pathway is understudied in AD and bvFTD.LC-TEC microstructural alterations are present in both AD and bvFTD.Greater LC-TEC microstructural alterations in bvFTD than AD.LC-TEC microstructural alterations in bvFTD are associated to EC neurodegeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10781651PMC
http://dx.doi.org/10.1002/dad2.12513DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
8
disease frontotemporal
8
frontotemporal dementia
8
bvftd controls
8
microstructural alterations
4
alterations locus
4
locus coeruleus-entorhinal
4
coeruleus-entorhinal cortex
4
cortex pathway
4
pathway alzheimer's
4

Similar Publications

The development of multifunctional therapeutic agents is crucial for addressing complex diseases such as Alzheimer's disease. Herein, we report a ruthenium-rhenium (Ru-Re) complex that combines photodynamic therapy (PDT) and carbon monoxide (CO) generation capabilities. The Ru-Re complex shows promising photophysical property and significant therapeutic potential.

View Article and Find Full Text PDF

Mechanisms and clinical applications of palmitoylethanolamide (PEA) in the treatment of neuropathic pain.

Inflammopharmacology

December 2024

Department of Research and Development, First Floor, Molecules Biolabs Private Limited, Commercial Building Kinfra, 3/634Konoor Road, Muringur, Vadakkummuri, Koratty, Mukundapuram, Thrissur, Kerala, 680309, India.

Palmitoylethanolamide (PEA) is emerging as a promising therapeutic agent for neuropathic and other pain-related conditions. This naturally occurring fatty acid has drawn interest because of its ability to regulate pain and inflammation. Initially identified in food sources, PEA has been the subject of extensive research to elucidate its properties, efficacy, and clinical applications.

View Article and Find Full Text PDF

RASGEF1C as a novel prognostic biomarker for LUAD.

Discov Oncol

December 2024

Department of Thoracic Surgery, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong New Area, Shanghai, China.

Lung adenocarcinoma (LUAD) is a common histologic lung cancer with high morbidity and mortality, and most patients have distant metastases at diagnosis. RasGEF Domain Family Member 1C (RASGEF1C) could regulated Alzheimer's disease. However, its function in various cancers, including LUAD, is poorly understood.

View Article and Find Full Text PDF

A Self-Reinforced "Microglia Energy Modulator" for Synergistic Amyloid-β Clearance in Alzheimer's Disease Model.

Angew Chem Int Ed Engl

December 2024

Nanyang Technological University, School of Chemistry, Chemical Engineering and Biotechnology, 21 Nanyang Link, 637371, Singapore, SINGAPORE.

Microglial phagocytosis is a highly energy-consuming process that plays critical roles in clearing neurotoxic amyloid-β (Aβ) in Alzheimer's disease (AD). However, microglial metabolism is defective overall in AD, thereby undermining microglial phagocytic functions. Herein, we repurpose the existing antineoplastic drug lonidamine (LND) conjugated with hollow mesoporous Prussian blue (HMPB) as a "microglial energy modulator" (termed LND@HMPB-T7) for safe and synergistic Aβ clearance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!