A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hematopoietic stem cell heterogeneity in non-human primates revealed by five-lineage output bias analysis. | LitMetric

Hematopoietic stem cell heterogeneity in non-human primates revealed by five-lineage output bias analysis.

Blood Sci

State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Senior Department of Hematology, Fifth Medical Center, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing, China.

Published: January 2024

Understanding hematopoietic stem cell (HSC) heterogeneity is crucial for treating malignant blood disorders. Compared with mice, we have limited knowledge of the heterogeneity of human HSCs. Fortunately, non-human primates (NHPs) have become the best animal models for studying human HSCs. Here, we employed a public dataset derived from NHP autologous bone marrow transplantation, and focused on a total of 820 HSC clones with reconstitution capacity of all available five lineages (granulocyte, monocyte, B cell, T cell, and natural killer cell) at two time points (11/12 and/or 42/43 months). Intriguingly, unsupervised clustering on these clones revealed six HSC subtypes, including a lymphoid/myeloid balanced (LM-balanced) subtype and five single-lineage-biased subtypes. We also observed that the subtypes of these HSC clones might change over time, and a given subtype could transition into any one of the other five subtypes, albeit with a certain degree of selectivity. Particularly, each of the six subtypes was more likely to turn into lymphoid-biased rather than myeloid-biased ones. Additionally, our five-lineage classification method exhibited strong correlation with traditional lymphoid/myeloid bias classification method. Specifically, our granulocyte- and monocyte-biased subtypes were predominantly attributed to α-HSCs, while LM-balanced, B cell-biased, and T cell-biased subtypes were primarily associated with β-HSCs. The γ-HSCs were composed of a small subset of B cell-biased and T cell-biased subtypes. In summary, our five-lineage classification identifies more finely tuned HSC subtypes based on lineage output bias. These findings enrich our understanding of HSC heterogeneity in NHPs and provide important insights for human research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10781131PMC
http://dx.doi.org/10.1097/BS9.0000000000000176DOI Listing

Publication Analysis

Top Keywords

subtypes
9
hematopoietic stem
8
stem cell
8
non-human primates
8
output bias
8
hsc heterogeneity
8
human hscs
8
hsc clones
8
hsc subtypes
8
five-lineage classification
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!