Nonaqueous redox flow batteries (NARFBs) offer a promising solution for large-scale storage of renewable energy. However, crossover of redox active molecules between the two sides of the cell is a major factor limiting their development, as most selective separators are designed for deployment in water, rather than organic solvents. This report describes a systematic investigation of the crossover rates of redox active organic molecules through an anion exchange separator under RFB-relevant non-aqueous conditions (in acetonitrile/KPF) using a combination of experimental and computational methods. A structurally diverse set of neutral and cationic molecules was selected, and their rates of crossover were determined experimentally with the organic solvent-compatible anion exchange separator Fumasep FAP-375-PP. The resulting data were then fit to various descriptors of molecular size, charge, and hydrophobicity (overall charge, solution diffusion coefficient, globularity, dynamic volume, dynamic surface area, clogP). This analysis resulted in multiple statistical models of crossover rates for this separator. These models were then used to predict tether groups that dramatically slow the crossover of small organic molecules in this system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10783818 | PMC |
http://dx.doi.org/10.1039/d3ta02633g | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States.
Nonaqueous redox flow batteries (NARFBs) have been plagued by the lack of appropriate separators to prevent crossover. In this article, the synthesis and characterization of poly(norbornene) (PNB) anion-exchange membranes (AEMs) were studied. PNB is a copolymer of butyl norbornene (BuNB) and bromobutyl norbornene (BrBuNB) with varying amounts of tetramethyl hexadiamine cross-linker.
View Article and Find Full Text PDFChem Asian J
January 2025
Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, INDIA.
Fulfilment of energy demand by utilizing renewable energy sources that do not contribute to the production of greenhouse gases is a step forward in mitigating global warming. However, with the energy sources being intermittent in nature, renewable energy needs to be stored effectively on a grid scale. In this context, the development of redox-flow batteries has emerged as a promising technology where charging and discharging processes are accomplished by the redox shuttling of the electrolytes, namely anolytes and catholytes.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Northwestern University, Technological Institute, Evanston, Illinois 60208, United States.
Recent advances in redox flow batteries have made them a viable option for grid-scale energy storage, however they exhibit low energy density. One way to boost energy density is by increasing the cell potential using a nonaqueous system. Molecular engineering has proven to be an effective strategy to develop redox-active compounds with extreme potentials but these are usually challenged by resource sustainability of the newly developed redox materials.
View Article and Find Full Text PDFSmall
December 2024
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China.
Small molecule electrode materials with superb redox activity have significant applied implications for K-ion storage, but they face significant challenges like high solubility in electrolytes and low conductivity, limiting their capacity, rate, and cycling stability. Herein, a series of Ni-bis(dithiolene) (NiS)-based small molecules are designed with control of various redox-active substitutional groups for K-ion batteries anode materials. It is identified that bis[1,2-di(pyridine-4-yl) ethylene-1,2-dithiolate] nickel Ni[CSPy] demonstrates a high reversible specific capacity (399 mAh g at 0.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtzstraße 11, D-89081, Ulm, Germany.
The development of next-generation battery technologies needs to consider their environmental impact throughout the whole cycle life, which has brought new chemistries based on earth-abundant elements into the spotlight. Rechargeable calcium batteries are such an emerging technology, which shows the potential to provide high cell voltage and high energy density close to lithium-ion batteries. Additionally, the use of Ca as a charge carrier renders significant sustainable values.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!