Background: Investigation of circulating metabolites associated with kidney function and chronic kidney disease (CKD) risk could enhance our understanding of underlying pathways and identify new biomarkers for kidney function.

Methods: We selected participants from the population-based Rotterdam Study with data on circulating metabolites and estimated glomerular filtration rate based on serum creatinine (eGFRcreat) available at the same time point. Data on eGFR based on serum cystatin C (eGFRcys) and urine albumin-to-creatinine ratio (ACR) were also included. CKD was defined as eGFRcreat <60 ml/min per 1.73 m. Data on circulating metabolites (n = 1381) was obtained from the Nightingale and Metabolon platform. Linear regression, linear mixed, and Cox proportional-hazards regression analyses were conducted to study the associations between metabolites and kidney function. We performed bidirectional two-sample Mendelian randomization analyses to investigate causality of the identified associations.

Results: We included 3337 and 1540 participants with data from Nightingale and Metabolon, respectively. A total of 1381 metabolites (243 from Nightingale and 1138 from Metabolon) were included in the analyses. A large number of metabolites were significantly associated with eGFRcreat, eGFRcys, ACR, and CKD, including 16 metabolites that were associated with all four outcomes. Among these, C-glycosyltryptophan (HR 1.50, 95%CI 1.31;1.71) and X-12026 (HR 1.46, 95%CI 1.26;1.68) were most strongly associated with CKD risk. We revealed sex differences in the associations of 11-ketoetiocholanolone glucuronide and 11-beta-glucuronide with the kidney function assessments. No causal associations between the identified metabolites and kidney function were observed.

Conclusion: Our study indicates that several circulating metabolites are associated with kidney function which are likely to have potential as biomarkers, rather than as molecules involved in the pathophysiology of kidney function decline.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10783258PMC
http://dx.doi.org/10.1093/ckj/sfad286DOI Listing

Publication Analysis

Top Keywords

circulating metabolites
12
metabolites associated
8
associated kidney
8
kidney function
8
based serum
8
kidney
4
function decline
4
decline incident
4
incident ckd
4
ckd multi-platform
4

Similar Publications

Photoreceptor metabolic window unveils eye-body interactions.

Nat Commun

January 2025

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Study Center for Ocular Diseases, Guangzhou, China.

Photoreceptors are specialized neurons at the core of the retina's functionality, with optical accessibility and exceptional sensitivity to systemic metabolic stresses. Here we show the ability of risk-free, in vivo photoreceptor assessment as a window into systemic health and identify shared metabolic underpinnings of photoreceptor degeneration and multisystem health outcomes. A thinner photoreceptor layer thickness is significantly associated with an increased risk of future mortality and 13 multisystem diseases, while systematic analyses of circulating metabolomics enable the identification of 109 photoreceptor-related metabolites, which in turn elevate or reduce the risk of these health outcomes.

View Article and Find Full Text PDF

The role of circulating metabolites on child development is understudied. We investigated associations between children's serum metabolome and early childhood development (ECD). Untargeted metabolomics was performed on serum samples of 5,004 children aged 6-59 months, a subset of participants from the Brazilian National Survey on Child Nutrition (ENANI-2019).

View Article and Find Full Text PDF

Endometriosis (EMs) is a common gynecological disease accompanied by metabolic disturbances. However, the causality between metabolites and the risk of EMs remains unclear. We conducted a 2-sample Mendelian randomization (MR) analysis using the publicly available genome-wide association study (GWAS) of 486 circulating metabolites and EMs.

View Article and Find Full Text PDF

The development of new and improved antiretroviral therapies that allow for alternative dosing schedules is needed for people living with HIV-1. Islatravir is a deoxyadenosine analog in development for the treatment of HIV-1 that suppresses HIV-1 replication via multiple mechanisms of action, including reverse transcriptase translocation inhibition and delayed chain termination. Islatravir is differentiated from other HIV-1 antiretrovirals by its high potency, long , broad tissue distribution, and favorable drug resistance profile.

View Article and Find Full Text PDF

Constitutive loss of kynurenine-3-monooxygenase changes circulating kynurenine metabolites without affecting systemic energy metabolism.

Am J Physiol Endocrinol Metab

January 2025

Molecular and Cellular Exercise Physiology, Department of physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.

Kynurenic acid (KYNA) and quinolinic acid (QUIN) are metabolites of the kynurenine pathway of tryptophan degradation with opposing biological activities in the central nervous system. In the periphery, KYNA is known to positively affect metabolic health, whereas the effects of QUIN remain less explored. Interestingly, metabolic stressors, including exercise and obesity, differentially change the balance between circulating KYNA and QUIN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!