Antimicrobial surface materials potentially prevent pathogen transfer from contaminated surfaces. Efficacy of such surfaces is assessed by standard methods using wet exposure conditions known to overestimate antimicrobial activity compared to dry exposure. Some dry test formats have been proposed but semi-dry exposure scenarios e.g. oral spray or water droplets exposed to ambient environment, are less studied. We aimed to determine the impact of environmental test conditions on antibacterial activity against the model species and . Surfaces based on copper, silver, and quaternary ammonium with known or claimed antimicrobial properties were tested in conditions mimicking microdroplet spray or larger water droplets exposed to variable relative air humidity in the presence or absence of organic soiling. All the environmental parameters critically affected antibacterial activity of the tested surfaces from no effect in high-organic dry conditions to higher effect in low-organic humid conditions but not reaching the effect size demonstrated in the ISO 22169 wet format. Copper was the most efficient antibacterial surface followed by silver and quaternary ammonium based coating. Antimicrobial testing of surfaces using small droplet contamination in application-relevant conditions could therefore be considered as one of the worst-case exposure scenarios relevant to dry use surfaces.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10781430 | PMC |
http://dx.doi.org/10.1093/femsmc/xtad022 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!