Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cardiogenic shock (CS) may have a negative impact on mortality in patients with heart failure (HF) or acute myocardial infarction (AMI). Early prediction of CS can result in improved survival. Artificial intelligence (AI) through machine learning (ML) models have shown promise in predictive medicine. Here, we conduct a systematic review and meta-analysis to assess the effectiveness of these models in the early prediction of CS. A thorough search of the PubMed, Web of Science, Cochrane, and Scopus databases was conducted from the time of inception until November 2, 2023, to find relevant studies. Our outcomes were area under the curve (AUC), the sensitivity and specificity of the ML model, the accuracy of the ML model, and the predictor variables that had the most impact in predicting CS. Comprehensive Meta-Analysis (CMA) Version 3.0 was used to conduct the meta-analysis. Six studies were considered in our study. The pooled mean AUC was 0.808 (95% confidence interval: 0.727, 0.890). The AUC in the included studies ranged from 0.77 to 0.91. ML models performed well, with accuracy ranging from 0.88 to 0.93 and sensitivity and specificity of 58%-78% and 88%-93%, respectively. Age, blood pressure, heart rate, oxygen saturation, and blood glucose were the most significant variables required by ML models to acquire their outputs. In conclusion, AI has the potential for early prediction of CS, which may lead to a decrease in the high mortality rate associated with it. Future studies are needed to confirm the results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10783597 | PMC |
http://dx.doi.org/10.7759/cureus.50395 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!