Autophagy is an essential catabolic pathway used to sequester and engulf cytosolic substrates via a unique double-membrane structure, called an autophagosome. The ubiquitin-like ATG8 proteins play an important role in mediating autophagosome membrane expansion. They are covalently conjugated to phosphatidylethanolamine (PE) on the autophagosomes via a ubiquitin-like conjugation system called ATG8 lipidation. In vitro reconstitution of ATG8 lipidation with synthetic liposomes has been previously established and used widely to characterise the function of the E1 ATG7, the E2 ATG3, and the E3 complex ATG12-ATG5-ATG16L1. However, there is still a lack of a tool to provide kinetic measurements of this enzymatic reaction. In this protocol, we describe a real-time lipidation assay using NBD-labelled ATG8. This real-time assay can distinguish the formation of ATG8 intermediates (ATG7~ATG8 and/or ATG3~ATG8) and, finally, ATG8-PE conjugation. It allows kinetic characterisation of the activity of ATG7, ATG3, and the E3 complex during ATG8 lipidation. Furthermore, this protocol can be adapted to characterise the upstream regulators that may affect protein activity in ATG8 lipidation reaction with a kinetic readout. Key features • Preparation of ATG7 E1 from insect cells (Sf9 cells). • Preparation of ATG3 E2 from bacteria (). • Preparation of LC3B S3C from bacteria (). • Preparation of liposomes to monitor the kinetics of ATG8 lipidation in a real-time manner.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10777053 | PMC |
http://dx.doi.org/10.21769/BioProtoc.4917 | DOI Listing |
mBio
December 2024
Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India.
parasites have a complex life cycle that transitions between mosquito and mammalian hosts, and undergo continuous cellular remodeling to adapt to various drastic environments. Following hepatocyte invasion, the parasite discards superfluous organelles for intracellular replication, and the remnant organelles undergo extensive branching and mature into hepatic merozoites. Autophagy is a ubiquitous eukaryotic process that permits the recycling of intracellular components.
View Article and Find Full Text PDFPLoS One
November 2024
Department of Biological Sciences, University of Denver, Denver, Colorado, United States of America.
Cell corpses must be cleared in an efficient manner to maintain tissue homeostasis and regulate immune responses. Ubiquitin-like Atg8/LC3 family proteins promote the degradation of membranes and internal cargo during both macroautophagy and corpse clearance, raising the question how macroautophagy contributes to corpse clearance. Studying the clearance of non-apoptotic dying polar bodies in Caenorhabditis elegans embryos, we show that the LC3 ortholog LGG-2 is enriched inside the polar body phagolysosome independent of autophagosome formation.
View Article and Find Full Text PDFBMB Rep
November 2024
Department of Vector Entomology, College of Ecology and Environment, Kyungpook National University, Sangju 37224; Research Institute of Invertebrate Vector, Kyungpook National University, Sangju 37224; Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju 37224, Korea.
Autophagy
December 2024
Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA.
Macroautophagy/autophagy degrades and recycles cellular constituents via the lysosome to maintain cellular homeostasis. Our study identified the endoplasmic reticulum (ER)-resident SIGMAR1 (sigma non-opioid intracellular receptor 1) as a critical regulator of the biosynthesis of Atg8-family proteins that leads to the lipidation that is essential during autophagosome formation. We demonstrate that SIGMAR1 stabilizes and mRNAs, promoting their localized translation proximal to the ER for efficient lipidation.
View Article and Find Full Text PDFBiosci Rep
October 2024
Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, U.S.A.
GABARAP is a member of the ATG8 family of ubiquitin-like autophagy related proteins. It was initially discovered as a facilitator of GABA-A receptor translocation to the plasma membrane and has since been shown to promote the intracellular transport of a variety of other proteins under non-autophagic conditions. We and others have shown that GABARAP interacts with the Type II phosphatidylinositol 4-kinase, PI4K2A, and that this interaction is important for autophagosome-lysosome fusion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!