Controlling the formation of supramolecular protein assemblies and endowing them with new properties that can lead to novel functional materials is an important but challenging task. In this work, a new hybrid polyoxometalate is designed to induce controlled intermolecular bridging between biotin-binding proteins. Such bridging interactions lead to the formation of supramolecular protein assemblies incorporating metal-oxo clusters that go from several nanometers in diameter up to the micron range. Insights into the self-assembly process and the nature of the resulting biohybrid materials are obtained by a combination of Small Angle X-ray Scattering (SAXS), Transmission Electron Microscopy (TEM), and Dynamic Light Scattering (DLS), along with fluorescence, UV-vis, and Circular Dichroism (CD) spectroscopy. The formation of hybrid supramolecular assemblies is determined to be driven by biotin binding to the protein and electrostatic interactions between the anionic metal-oxo cluster and the protein, both of which also influence the stability of the resulting assemblies. As a result, the rate of formation, size, and stability of the supramolecular assemblies can be tuned by controlling the electrostatic interactions between the cluster and the protein (e.g., through varying the ionic strength of the solution), thereby paving the way toward biomaterials with tunable assembly and disassembly properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202312009 | DOI Listing |
Adv Sci (Weinh)
January 2025
Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China.
Protein self-assembly allows for the formation of diverse supramolecular materials from relatively simple building blocks. In this study, a single-component self-assembling hydrogel is developed using the recombinant protein CsgA, and its successful application for spinal cord injury repair is demonstrated. Gelation is achieved by the physical entanglement of CsgA nanofibrils, resulting in a self-supporting hydrogel at low concentrations (≥5 mg mL).
View Article and Find Full Text PDFJ Mater Chem B
January 2025
School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
Most synthetic hydrogels are formed through radical polymerization to yield a homogenous covalent meshwork. In contrast, natural hydrogels form through mechanisms involving both covalent assembly and supramolecular interactions. In this communication, we expand the capabilities of covalent poly(ethylene glycol) (PEG) networks through co-assembly of supramolecular peptide nanofibers.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States.
Porous liquids (PLs) are an exciting new class of materials for carbon capture due to their high gas adsorption capacity and ease of industrial implementation. They are composed of sorbent particles suspended in a nonadsorbed solvent, forming a liquid with permanent porosity. While PLs have a vast number of potential compositions based on the number of solvents and sorbent materials available, most of the research has been focused on the selection of the sorbent rather than the solvent.
View Article and Find Full Text PDFNat Commun
January 2025
Interdisciplinary Science Center, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
Fluorogenic RNA aptamers have various applications, including use as fluorescent tags for imaging RNA trafficking and as indicators of RNA-based sensors that exhibit fluorescence upon binding small-molecule fluorophores in living cells. Current fluorogenic RNA:fluorophore complexes typically emit visible fluorescence. However, it is challenging to develop fluorogenic RNA with near-infrared (NIR) fluorescence for in vivo imaging and sensing studies.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG), UMR 7586, CNRS, Université Paris Diderot, 8, Pace Aurélie Nemours, 75013 Paris, France.
Accurate protein synthesis requires ribosomes to integrate signals from distant functional sites and execute complex dynamics. Despite advances in understanding ribosome structure and function, two key questions remain: how information is transmitted between these distant sites, and how ribosomal movements are synchronized? We recently highlighted the existence of ribosomal protein networks, likely evolved to participate in ribosome signaling. Here, we investigate the relationship between ribosomal protein networks and ribosome dynamics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!