A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Small groups in multidimensional feature space: Two examples of supervised two-group classification from biomedicine. | LitMetric

Small groups in multidimensional feature space: Two examples of supervised two-group classification from biomedicine.

J Bioinform Comput Biol

Laboratory of Epigenetic Regulation of Hematopoiesis, National Medical Research Center for Hematology, Novii Zikovskii proezd, 4, 125167 Russia, Moscow, Russia.

Published: December 2023

Some biomedical datasets contain a small number of samples which have large numbers of features. This can make analysis challenging and prone to errors such as overfitting and misinterpretation. To improve the accuracy and reliability of analysis in such cases, we present a tutorial that demonstrates a mathematical approach for a supervised two-group classification problem using two medical datasets. A tutorial provides insights on effectively addressing uncertainties and handling missing values without the need for removing or inputting additional data. We describe a method that considers the size and shape of feature distributions, as well as the pairwise relations between measured features as separate derived features and prognostic factors. Additionally, we explain how to perform similarity calculations that account for the variation in feature values within groups and inaccuracies in individual value measurements. By following these steps, a more accurate and reliable analysis can be achieved when working with biomedical datasets that have a small sample size and multiple features.

Download full-text PDF

Source
http://dx.doi.org/10.1142/S0219720023500257DOI Listing

Publication Analysis

Top Keywords

supervised two-group
8
two-group classification
8
biomedical datasets
8
datasets small
8
small groups
4
groups multidimensional
4
multidimensional feature
4
feature space
4
space examples
4
examples supervised
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!