A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High-throughput mass spectrometry analysis using immediate drop-on-demand technology coupled with an open port sampling interface. | LitMetric

High-throughput mass spectrometry analysis using immediate drop-on-demand technology coupled with an open port sampling interface.

Rapid Commun Mass Spectrom

Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.

Published: February 2024

Rationale: The sampling throughput of immediate drop-on-demand technology (I.DOT) coupled with an open port sampling interface (OPSI) is limited by software communication. To enable much-needed high-throughput mass spectrometry (MS) analysis capabilities, a novel software was developed that allows for flexible sample selection from a 96-well plate and for maximized analysis throughput using I.DOT/OPSI-MS coupling.

Methods: Wells of a 96-well I.DOT plate were filled with propranolol solution and were used to test maximum sampling throughput strategies to minimize analysis time. Demonstration of chemical reaction monitoring was done using acid-catalyzed ring closure of 2,3-diaminonaphthalene (DAN) with nitrite to form 2,3-naphthotriazole (NAT). Analytes were detected in positive electrospray ionization mode using selected reaction monitoring.

Results: A maximum throughput of 1.54 s/sample (7.41 min/96-well plate with three technical replicates) was achieved, and it was limited by the peak width of the MS signal resulting in an occasional slight overlap between the peaks. Relative standard deviation was 10 ± 1% with all tested sampling strategies. Chemical reaction monitoring of DAN to NAT using nitrite was successfully accomplished with 2 s/sample throughout showing almost complete transformation in 10 min with no signal overlap.

Conclusions: This work illustrates the development of a noncontact, automated I.DOT/OPSI-MS system with improved throughput achieved through an optimized software interface. Its achievable analysis time and precision make it a viable approach for drug discovery and in situ reaction monitoring studies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.9687DOI Listing

Publication Analysis

Top Keywords

reaction monitoring
12
high-throughput mass
8
mass spectrometry
8
spectrometry analysis
8
drop-on-demand technology
8
coupled open
8
open port
8
port sampling
8
sampling interface
8
sampling throughput
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!