Polycystic ovary syndrome (PCOS) is a prevalent endocrine and metabolic disorder that is frequently linked to anovulation in women who are experiencing infertility. Intestinal flora, also known as the "second genome" of the host, is closely associated with chronic metabolic diseases. Recently, there has been increasing attention on the connection between PCOS and the gut microbiome, and experiments have been conducted. However, the results were unsatisfactory and inconsistent. This review aims to provide a comprehensive overview of the literature investigating the associations between the gut microbiome and PCOS in adults. The goal is to identify whether there are changes in the composition of the gut microbiome in individuals with PCOS. This is the first systematic review to focus on functional alterations in the gut microbiome, which could provide insights into potential mechanisms of microbial involvement in the development of PCOS. We found that there was no significant change in gut microbiome biodiversity in PCOS. Meta-analyses of three studies revealed a significantly higher abundance of Proteobacteria (1.12, 95% CI, 0.21, 2.02, I = 0%) in adults with PCOS. At the genus level, Bacteroides, Enterococcus, and Escherichia-Shigella were found to be enriched in patients with PCOS. Species such as Ruminococcus gnavus group, Parabacteroides distasonis, and Bacteroides fragilis showed an increase in PCOS. Metabolic pathways associated with glucose, lipid metabolism, bile acid metabolism, and protein absorption were found to be enriched in individuals with PCOS. The gut microbiome in PCOS is not characterized by lower diversity, but the composition is altered at the phylum, family, genus, or species level. Consequently, the metabolic pathway differs according to the phenotype of PCOS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s43032-023-01440-4 | DOI Listing |
Backgrounds: Abuse of feed supplement can cause oxidative stress and inflammatory responses in Gallus gallus. Synbiotics are composed of prebiotics and probiotics and it possess huge application potentials in the treatment of animal diseases.
Methods: This study examined the effect of d-tagatose on the probiotic properties of L.
PLoS One
January 2025
Department of Animal Science, State University of Londrina (UEL), Londrina, Paraná, Brazil.
Chlorella vulgaris has antioxidant, antimicrobial, and anti-inflammatory properties, as well as the probiotic that is important for keeping the intestinal microbiota balanced. The objective was to test the impact of supplementation with microalgae and/or probiotics on broiler chickens' performance, immunity, and intestinal microbiota. The experimental design was in randomized blocks in a 4x2 factorial scheme, with four levels of inclusion of C.
View Article and Find Full Text PDFCurr Opin Oncol
January 2025
San Roque Hospital, Lanzarote, Spain.
Purpose Of Review: Recent research underscores the significant influence of the skin and gut microbiota on melanoma and nonmelanoma skin cancer (NMSC) development and treatment outcomes. This review aims to synthesize current findings on how microbiota modulates immune responses, particularly enhancing the efficacy of immunotherapies such as immune checkpoint inhibitors (ICIs).
Recent Findings: The microbiota's impact on skin cancer is multifaceted, involving immune modulation, inflammation, and metabolic interactions.
J Dev Orig Health Dis
January 2025
Department of Nutrition, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
To clarify the effects of kefir in critical periods of development in adult diseases, we study the effects of kefir intake during early life on gut microbiota and prevention of colorectal carcinogenesis in adulthood. Lactating Wistar rats were divided into three groups: control (C), kefir lactation (KL), and kefir puberty (KP) groups. The C and KP groups received 1 mL of water/day; KL dams received kefir milk daily (10 CFU/mL) during lactation.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
Unlabelled: The intestine is home to a complex immune system that is engaged in mutualistic interactions with the microbiome that maintain intestinal homeostasis. A variety of immune-derived anti-inflammatory mediators have been uncovered and shown to be critical for maintaining these beneficial immune-microbiome relationships. Notably, the gut microbiome actively invokes the induction of anti-inflammatory pathways that limit the development of microbiome-targeted inflammatory immune responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!